The search for load-bearing, impact-resistant, and energy-absorbing cellular materials is of central interest in many fields including aerospace, automotive, civil, sports, packaging, and biomedical. In order to achieve the desired characteristic geometry and/or topology, a perspective approach may be used, such as utilization of atomic models as input data for 3D printing of macroscopic objects. In this paper, we suggest a new approach for the development of advanced cellular materials-crystallomorphic design based on selection of perspective crystal structures and modeling of their electron density distribution and utilization of isoelectronic surfaces as a generatrix for 3D-printed cellular materials.
View Article and Find Full Text PDFUsing glass crystallization and solid-state techniques, we were able to complete the family of salt-inclusion silver halide borates, AgBOX, by the X = Cl and I members. The new compounds are characterized by differential scanning calorimetry, single-crystal and high-temperature powder X-ray diffraction, optical spectroscopy, and density functional theory calculations. In all structures, the silver atoms exhibit strong anharmonicity of thermal vibrations, which could be modeled using Gram-Charlier expansion, and its asymmetry was characterized by the skewness vector.
View Article and Find Full Text PDFAn acentric borate family, AgBOX (X = Br, I), has been prepared by slow cooling stoichiometric melts in evacuated silica ampules. Their crystal structure is comprised of two porous interpenetrating frameworks and demonstrates a further development of the "salt-inclusion" architecture toward a "covalent-inclusion" structure. The (AgX) sublattice shows strong anharmonic vibrations.
View Article and Find Full Text PDF