Publications by authors named "Maxim Volgushev"

Long-term changes of synaptic transmission can be induced by Hebbian-type homosynaptic mechanisms which require activation of both pre- and postsynapse and mediate associative learning, as well as by heterosynaptic mechanisms which do not require activation of the presynapse and are non-associative. The rules for induction of homosynaptic plasticity depend on the distance of the synapse from the soma. Does induction of heterosynaptic plasticity also depend on synaptic location? Here, we investigated heterosynaptic changes in pharmacologically isolated glutamatergic inputs arriving at either the proximal or the distal segments of the apical dendrite of layer 2/3 pyramidal neurons in rat visual cortex.

View Article and Find Full Text PDF

Heterosynaptic plasticity, along with Hebbian homosynaptic plasticity, is an important mechanism ensuring the stable operation of learning neuronal networks. However, whether heterosynaptic plasticity occurs in the whole brain in vivo, and what role(s) in brain function in vivo it could play, remains unclear. Here, we used an optogenetics approach to apply a model of intracellular tetanization, which was established and employed to study heterosynaptic plasticity in brain slices, to study the plasticity of response properties of neurons in the mouse visual cortex in vivo.

View Article and Find Full Text PDF

Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine.

View Article and Find Full Text PDF

Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity similar to those produced by continuously moving stimuli. An important prerequisite for producing such activity patterns is prolongation of responses to brief stimuli.

View Article and Find Full Text PDF

The dentate gyrus is one of the few sites of neurogenesis in the adult brain. Integration of new-generated granule cells into the hippocampal circuitry provides a substrate for structural plasticity, fundamental for normal function of adult hippocampus. However, mechanisms of synaptic plasticity that mediate integration of new-generated granule cells into the existing circuitry remain poorly understood.

View Article and Find Full Text PDF

Locomotion on complex terrains often requires vision. However, how vision serves locomotion is not well understood. Here, we asked when visual information necessary for accurate stepping is collected and how its acquisition relates to the step cycle.

View Article and Find Full Text PDF

Theoretical and modeling studies demonstrate that heterosynaptic plasticity-changes at synapses inactive during induction-facilitates fine-grained discriminative learning in Hebbian-type systems, and helps to achieve a robust ability for repetitive learning. A dearth of tools for selective manipulation has hindered experimental analysis of the proposed role of heterosynaptic plasticity in behavior. Here we circumvent this obstacle by testing specific predictions about the behavioral consequences of the impairment of heterosynaptic plasticity by experimental manipulations to adenosine A1 receptors (A1Rs).

View Article and Find Full Text PDF

Zebrafish models are used increasingly to study the molecular pathogenesis of Parkinson's disease (PD), owing to the extensive array of techniques available for their experimental manipulation and analysis. The ascending dopaminergic projection from the posterior tuberculum (TPp; diencephalic populations DC2 and DC4) to the subpallium is considered the zebrafish correlate of the mammalian nigrostriatal projection, but little is known about the neurophysiology of zebrafish DC2/4 neurons. This is an important knowledge gap, because autonomous activity in mammalian substantia nigra (SNc) dopaminergic neurons contributes to their vulnerability in PD models.

View Article and Find Full Text PDF

Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity.

View Article and Find Full Text PDF

Inhibition in neuronal networks of the neocortex serves a multitude of functions, such as balancing excitation and structuring neuronal activity in space and time. Plasticity of inhibition is mediated by changes at both inhibitory synapses, as well as excitatory synapses on inhibitory neurons. Using slices from visual cortex of young male rats, we describe a novel form of plasticity of excitatory synapses on inhibitory neurons, weight-dependent heterosynaptic plasticity.

View Article and Find Full Text PDF

Short-term synaptic plasticity (STP) critically affects the processing of information in neuronal circuits by reversibly changing the effective strength of connections between neurons on time scales from milliseconds to a few seconds. STP is traditionally studied using intracellular recordings of postsynaptic potentials or currents evoked by presynaptic spikes. However, STP also affects the statistics of postsynaptic spikes.

View Article and Find Full Text PDF

Mice deficient in the extracellular matrix glycoprotein tenascin-C (TNC) express a deficit in specific forms of hippocampal synaptic plasticity, which involve the L-type voltage-gated Ca channels (L-VGCCs). The mechanisms underlying this deficit and its functional implications for learning and memory have not been investigated. In line with previous findings, we report on impairment in theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in TNC mice in the CA1 hippocampal region and its rescue by the L-VGCC activator Bay K-8644.

View Article and Find Full Text PDF

Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations.

View Article and Find Full Text PDF

The ability of neocortical neurons to detect and encode rapid changes at their inputs is crucial for basic neuronal computations, such as coincidence detection, precise synchronization of activity and spike-timing dependent plasticity. Indeed, populations of cortical neurons can respond to subtle changes of the input very fast, on a millisecond time scale. Theoretical studies and model simulations linked the encoding abilities of neuronal populations to the fast onset dynamics of action potentials (APs).

View Article and Find Full Text PDF

Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics.

View Article and Find Full Text PDF

Unlabelled: Hebbian-type learning rules, which underlie learning and refinement of neuronal connectivity, postulate input specificity of synaptic changes. However, theoretical analyses have long appreciated that additional mechanisms, not restricted to activated synapses, are needed to counteract positive feedback imposed by Hebbian-type rules on synaptic weight changes and to achieve stable operation of learning systems. The biological basis of such mechanisms has remained elusive.

View Article and Find Full Text PDF

Mammals perceive a wide range of temporal cues in natural sounds, and the auditory cortex is essential for their detection and discrimination. The rat primary (A1), ventral (VAF), and caudal suprarhinal (cSRAF) auditory cortical fields have separate thalamocortical pathways that may support unique temporal cue sensitivities. To explore this, we record responses of single neurons in the three fields to variations in envelope shape and modulation frequency of periodic noise sequences.

View Article and Find Full Text PDF

Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity-heterosynaptic plasticity-represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies.

View Article and Find Full Text PDF

Understanding single-neuron computations and encoding performed by spike-generation mechanisms of cortical neurons is one of the central challenges for cell electrophysiology and computational neuroscience. An established paradigm to study spike encoding in controlled conditions in vitro uses intracellular injection of a mixture of signals with fluctuating currents that mimic in vivo-like background activity. However this technique has two serious limitations: it uses current injection, while synaptic activation leads to changes of conductance, and current injection is technically most feasible in the soma, while the vast majority of synaptic inputs are located on the dendrites.

View Article and Find Full Text PDF

Accurately describing synaptic interactions between neurons and how interactions change over time are key challenges for systems neuroscience. Although intracellular electrophysiology is a powerful tool for studying synaptic integration and plasticity, it is limited by the small number of neurons that can be recorded simultaneously in vitro and by the technical difficulty of intracellular recording in vivo. One way around these difficulties may be to use large-scale extracellular recording of spike trains and apply statistical methods to model and infer functional connections between neurons.

View Article and Find Full Text PDF

The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons.

View Article and Find Full Text PDF

Key Points: Adenosine might be the most widespread neuromodulator in the brain, but its effects on inhibitory transmission in the neocortex are not understood. Here we report that adenosine suppresses inhibitory transmission to layer 2/3 pyramidal neurons via activation of presynaptic A1 receptors. We present evidence for functional A2A receptors, which have a weak modulatory effect on the A1-mediated suppression, at about 50% of inhibitory synapses at pyramidal neurons.

View Article and Find Full Text PDF

Understanding of how neurons transform fluctuations of membrane potential, reflecting input activity, into spike responses, which communicate the ultimate results of single-neuron computation, is one of the central challenges for cellular and computational neuroscience. To study this transformation under controlled conditions, previous work has used a signal immersed in noise paradigm where neurons are injected with a current consisting of fluctuating noise that mimics on-going synaptic activity and a systematic signal whose transmission is studied. One limitation of this established paradigm is that it is designed to examine the encoding of only one signal under a specific, repeated condition.

View Article and Find Full Text PDF

Plasticity is a universal property of synapses. It is expressed in a variety of forms mediated by a multitude of mechanisms. Here we consider two broad kinds of plasticity that differ in their requirement for presynaptic activity during the induction.

View Article and Find Full Text PDF

Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes.

View Article and Find Full Text PDF