Publications by authors named "Maxim V Shugaev"

Article Synopsis
  • The prediction of RNA structure from its sequence is challenging due to a lack of experimental data, which has slowed advancement in the field.
  • Researchers have developed a dataset called Ribonanza, consisting of chemical mapping data from two million RNA sequences, collected through crowdsourcing platforms like Eterna.
  • Utilizing this dataset, they created a deep learning model named RibonanzaNet, which, when fine-tuned, demonstrates superior performance in predicting various RNA behaviors, potentially improving understanding of RNA structures.
View Article and Find Full Text PDF

Melting is a common and well-studied phenomenon that still reveals new facets when triggered by laser excitation and probed with ultrafast electron diffraction. Recent experimental evidence of anomalously slow nanosecond-scale melting of thin gold films irradiated by femtosecond laser pulses motivates computational efforts aimed at revealing the underlying mechanisms of melting. Atomistic simulations reveal that a combined effect of lattice superheating and relaxation of laser-induced stresses ensures the dominance of the homogeneous melting mechanism at all energies down to the melting threshold and keeps the time scale of melting within ~100 picoseconds.

View Article and Find Full Text PDF

Correction for 'The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations' by Cheng-Yu Shih et al., Phys. Chem.

View Article and Find Full Text PDF

The effect of a liquid environment on the fundamental mechanisms of surface nanostructuring and generation of nanoparticles by single pulse laser ablation is investigated in a closely integrated computational and experimental study. A large-scale molecular dynamics simulation of spatially modulated ablation of Cr in water reveals a complex picture of the dynamic interaction between the ablation plume and water. Ablation plume is found to be rapidly decelerated by the water environment, resulting the formation and prompt disintegration of a hot metal layer at the interface between the ablation and water.

View Article and Find Full Text PDF

The generation of colloidal solutions of chemically clean nanoparticles through pulsed laser ablation in liquids (PLAL) has evolved into a thriving research field that impacts industrial applications. The complexity and multiscale nature of PLAL make it difficult to untangle the various processes involved in the generation of nanoparticles and establish the dependence of nanoparticle yield and size distribution on the irradiation parameters. Large-scale atomistic simulations have yielded important insights into the fundamental mechanisms of ultrashort (femtoseconds to tens of picoseconds) PLAL and provided a plausible explanation of the origin of the experimentally observed bimodal nanoparticle size distributions.

View Article and Find Full Text PDF

Manipulation of magnetism using laser light is considered as a key to the advancement of data storage technologies. Until now, most approaches seek to optically switch the direction of magnetization rather than to reversibly manipulate the ferromagnetism itself. Here, we use ∼100 fs laser pulses to reversibly switch ferromagnetic ordering on and off by exploiting a chemical order-disorder phase transition in FeAl, from the B2 to the A2 structure and vice versa.

View Article and Find Full Text PDF

The synthesis of chemically clean and environmentally friendly nanoparticles through pulsed laser ablation in liquids has shown a number of advantages over conventional chemical synthesis methods and has evolved into a thriving research field attracting laboratory and industrial applications. The fundamental understanding of processes leading to the nanoparticle generation, however, still remains elusive. In particular, the origin of bimodal nanoparticle size distributions in femto- and picosecond laser ablation in liquids, where small nanoparticles (several nanometers) with narrow size distribution are commonly observed to coexist with larger (tens to hundreds of nanometers) ones, has not been explained so far.

View Article and Find Full Text PDF

The ability of short pulse laser ablation in liquids to produce clean colloidal nanoparticles and unusual surface morphology has been employed in a broad range of practical applications. In this paper, we report the results of large-scale molecular dynamics simulations aimed at revealing the key processes that control the surface morphology and nanoparticle size distributions by pulsed laser ablation in liquids. The simulations of bulk Ag targets irradiated in water are performed with an advanced computational model combining a coarse-grained representation of liquid environment and an atomistic description of laser interaction with metal targets.

View Article and Find Full Text PDF

Laser ablation in liquids is actively used for generation of clean colloidal nanoparticles with unique shapes and functionalities. The fundamental mechanisms of the laser ablation in liquids and the key processes that control the nanoparticle structure, composition, and size distribution, however, are not yet fully understood. In this paper, we report the results of first atomistic simulations of laser ablation of metal targets in liquid environment.

View Article and Find Full Text PDF

The structural changes generated in surface regions of single crystal Ni targets by femtosecond laser irradiation are investigated experimentally and computationally for laser fluences that, in the multipulse irradiation regime, produce sub-100 nm high spatial frequency surface structures. Detailed experimental characterization of the irradiated targets combining electron back scattered diffraction analysis with high-resolution transmission electron microscopy reveals the presence of multiple nanoscale twinned domains in the irradiated surface regions of single crystal targets with (111) surface orientation. Atomistic- and continuum-level simulations performed for experimental irradiation conditions reproduce the generation of twinned domains and establish the conditions leading to the formation of growth twin boundaries in the course of the fast transient melting and epitaxial regrowth of the surface regions of the irradiated targets.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: