Ferroelectricity is in demand in many device concepts in electronics, energy and microsystem engineering. The performance of ferroelectrics-based devices is determined by either out-of-plane or in-plane polarization, or out-of-plane or in-plane piezoelectric strain. Real prospects for the practical implementation of innovative devices opened up after the discovery of ferroelectricity in ultrathin hafnium oxide films, due to their perfect compatibility with silicon technology.
View Article and Find Full Text PDFFerroelectric hafnium oxide thin films-the most promising materials in microelectronics' non-volatile memory-exhibit both unconventional ferroelectricity and unconventional piezoelectricity. Their exact origin remains controversial, and the relationship between ferroelectric and piezoelectric properties remains unclear. We introduce a new method to investigate this issue, which consists in a local controlled modification of the ferroelectric and piezoelectric properties within a single HfZrO capacitor device through local doping and a further comparative nanoscopic analysis of the modified regions.
View Article and Find Full Text PDFNew interest in microscopic studies of ferroelectric materials with low piezoelectric coefficient, $d_{33}^\ast$, has emerged after the discovery of ferroelectric properties in HfO2 thin films, which are the main candidate for the next generation of nonvolatile ferroelectric memory. The study of the microscopic structure of ferroelectric HfO2 capacitors is crucial to get insights into the device behavior and performance. However, a small $d_{33}^\ast$ of ferroelectric HfO2 films leads to a low piezoresponse, especially in band excitation piezoresponse force microscopy (BE-PFM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
New opportunities in the development and commercialization of novel photonic and electronic devices can be opened following the development of technology-compatible arbitrary-shaped ferroelectrics encapsulated in a passive environment. Here, we report and experimentally demonstrate nanoscale tailoring of ferroelectricity by an arbitrary pattern within the nonferroelectric thin film. For inducing the ferroelectric nanoregions in the nonferroelectric surrounding, we developed a technology-compatible approach of local doping of a thin (10 nm) HfO film by Ga ions right in the thin-film capacitor device focused ion beam implantation.
View Article and Find Full Text PDFWe demonstrate a broadband AsS-based fiber coupler operating up to the 5.4 μm wavelength range developed by using a fused biconical tapering technique. During the manufacturing process, real-time data monitoring of the coupling ratio was at 2.
View Article and Find Full Text PDFBecause of their full compatibility with the modern Si-based technology, the HfO-based ferroelectric films have recently emerged as viable candidates for application in nonvolatile memory devices. However, despite significant efforts, the mechanism of the polarization switching in this material is still under debate. In this work, we elucidate the microscopic nature of the polarization switching process in functional HfZrO-based ferroelectric capacitors during its operation.
View Article and Find Full Text PDFThe paper describes the concept of a compact, lightweight heterodyne NIR spectro-radiometer suitable for atmospheric sounding with solar occultations, and the first measurement of CO2 and CH4 absorption near 1.65 μm with spectral resolution λ/δλ~10(8). A highly stabilized DFB laser was used as local oscillator, while single model silica fiber Y-coupler served as a diplexer.
View Article and Find Full Text PDFAn easily reproducible device is demonstrated to be capable of measuring the radii of curvature of spherical mirrors, both convex and concave, without resorting to high-end interferometric or tactile devices. The former are too elaborate for our purposes, and the latter cannot be used due to the delicate nature of the coatings applied to mirrors used in high-power CO(2) laser applications. The proposed apparatus is accurate enough to be useful to anyone using curved optics and needing a quick way to assess the values of the radii of curvature, be it for entrance quality control or trouble shooting an apparently malfunctioning optical system.
View Article and Find Full Text PDF