A new robust algorithm based on the explanation method SurvLIME called SurvLIME-KS is proposed for explaining machine learning survival models. The algorithm is developed to ensure robustness to cases of a small amount of training data or outliers of survival data. The first idea behind SurvLIME-KS is to apply the Cox proportional hazards model to approximate the black-box survival model at the local area around a test example due to the linear relationship of covariates in the model.
View Article and Find Full Text PDF