Publications by authors named "Maxim Remennyi"

Semiconductor nanowires are routinely grown on high-priced crystalline substrates as it is extremely challenging to grow directly on plastics and flexible substrates due to high-temperature requirements and substrate preparation. At the same time, plastic substrates can offer many advantages such as extremely low price, light weight, mechanical flexibility, shock and thermal resistance, and biocompatibility. We explore the direct growth of high-quality III-V nanowires on flexible plastic substrates by metal-organic vapor phase epitaxy (MOVPE).

View Article and Find Full Text PDF

Due to their tunable optical properties with various shapes, sizes, and compositions, nanowires (NWs) have been regarded as a class of semiconductor nanostructures with great potential for photodetectors, light-emitting diodes, gas sensors, microcavity lasers, optical modulators, and converters. Indium arsenide (InAs), an attractive III-V semiconductor NW with the advantages of narrow bandgap and large electron mobility, has attracted considerable interest in infrared optoelectronic and photonic devices. Here, we studied the ultrafast carrier dynamics and nonlinear optical responses of InAs NWs ranging from 1.

View Article and Find Full Text PDF