Phys Chem Chem Phys
August 2013
Organic photovoltaics (OPVs) are compliant with inexpensive, scalable, and environmentally benign manufacturing technologies. While substantial attention has been focused on optimization of active layer chemistry, morphology, and processing, far less research has been directed to understanding charge transport at the interfaces between the electrodes and the active layer. Electrical properties of these interfaces not only impact efficiency, but also play a central role in stability of organic solar cells.
View Article and Find Full Text PDFOrganic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.
View Article and Find Full Text PDFLong fibers assembled from peptide amphiphiles capable of binding the metalloporphyrin zinc protoporphyrin IX ((PPIX)Zn) have been synthesized. Rational peptide design was employed to generate a peptide, c16-AHL(3)K(3)-CO(2)H, capable of forming a β-sheet structure that propagates into larger fibrous structures. A porphyrin-binding site, a single histidine, was engineered into the peptide sequence in order to bind (PPIX)Zn to provide photophysical functionality.
View Article and Find Full Text PDFNanometer- scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nanothermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 °C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 × 2 array of spots, with 2 μm spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated.
View Article and Find Full Text PDFPhase transitions in purple membrane have been a topic of debate for the past two decades. In this work we present studies of a reversible transition of purple membrane in the 50-60 °C range in zeptoliter volumes under different heating regimes (global heating and local heating). The temperature of the reversible phase transition is 52 ± 5 °C for both local and global heating, supporting the hypothesis that this transition is mainly due to a structural rearrangement of bR molecules and trimers.
View Article and Find Full Text PDFThe plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy-storage, and information-technology devices depends critically on understanding and controlling field-induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics.
View Article and Find Full Text PDFThe effect of molecular orientation at metal contacts on interface properties was determined by examining the local work function of porphyrin on atomically smooth graphite. The orientation was varied by self-assembly from the vapor phase, and the local potential was quantified by Kelvin force microscopy (scanning surface potential microscopy). When the porphyrin ring is oriented parallel to the substrate, the surface work function is 50 mV less than that of the highly ordered pyrolytic graphite; in contrast, when the porphyrin molecular plane is oriented perpendicular to the substrate, the surface work function is unchanged.
View Article and Find Full Text PDF