Collision induced unfolding (CIU) is a method used with ion mobility mass spectrometry to examine protein structures and their stability. Such experiments yield information about higher order protein structures, yet are unable to provide details about the underlying processes. That information can however be provided using molecular dynamics simulations.
View Article and Find Full Text PDFProteins can be oriented in the gas phase using strong electric fields, which brings advantages for structure determination using X-ray free electron lasers. Both the vacuum conditions and the electric-field exposure risk damaging the protein structures. Here, we employ molecular dynamics simulations to rehydrate and relax vacuum and electric-field exposed proteins in aqueous solution, which simulates a refinement of structure models derived from oriented gas-phase proteins.
View Article and Find Full Text PDFMS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone.
View Article and Find Full Text PDFProteins are innately dynamic, which is important for their functions, but which also poses significant challenges when studying their structures. Gas-phase techniques can utilise separation and a range of sample manipulations to transcend some of the limitations of conventional techniques for structural biology in crystalline or solution phase, and isolate different states for separate interrogation. However, the transfer from solution to the gas phase risks affecting the structures, and it is unclear to what extent different conformations remain distinct in the gas phase, and if resolution can recover the native conformations and their differences.
View Article and Find Full Text PDFThe dynamics of proteins are crucial for their function. However, commonly used techniques for studying protein structures are limited in monitoring time-resolved dynamics at high resolution. Combining electric fields with existing techniques to study gas-phase proteins, such as single particle imaging using free-electron lasers and gas-phase small angle X-ray scattering, has the potential to open up a new era in time-resolved studies of gas-phase protein dynamics.
View Article and Find Full Text PDFNoroviruses are the major cause of viral gastroenteritis and re-emerge worldwide every year, with GII.4 currently being the most frequent human genotype. The norovirus capsid protein VP1 is essential for host immune response.
View Article and Find Full Text PDFOne of the challenges facing single particle imaging with ultrafast X-ray pulses is the structural heterogeneity of the sample to be imaged. For the method to succeed with weakly scattering samples, the diffracted images from a large number of individual proteins need to be averaged. The more the individual proteins differ in structure, the lower the achievable resolution in the final reconstructed image.
View Article and Find Full Text PDF