Publications by authors named "Maxim Morozov"

Antimicrobial resistance poses a serious threat to global public health. The COVID-19 pandemic underscored the need to monitor the dissemination of antimicrobial resistance genes and understand the mechanisms driving this process. In this study, we analyzed changes to the oropharyngeal and fecal resistomes of patients with COVID-19 undergoing therapy in a hospital setting.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel diseases involve ongoing inflammation in the intestines and changes in gut microbiota, which can be influenced by outer membrane vesicles (OMVs) that contain polysaccharide A (PSA).
  • The study used a mouse model of intestinal colitis induced by sodium dextran sulfate (DSS) and examined the effects of OMV treatment by assessing disease severity and gut tissue health through disease activity index (DAI) and histology.
  • Results indicated that OMV treatment improved intestinal healing and altered microbiota composition, highlighting OMVs’ potential as both anti-inflammatory agents and facilitators of microbiota recovery.
View Article and Find Full Text PDF

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus's effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms.

View Article and Find Full Text PDF

Sweet-tasting proteins (SPs) are proteins of plant origin initially isolated from tropical fruits. They are thousands of times sweeter than sucrose and most artificial sweeteners. SPs are a class of proteins capable of causing a sweet taste sensation in humans when interacting with the T1R2/T1R3 receptor.

View Article and Find Full Text PDF

Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood.

View Article and Find Full Text PDF

Nanocrystalline titanium dioxide (TiO) is a widespread multifunctional and environmentally friendly material that has numerous applications requiring micro-/nanofabrication or thin film deposition. In most cases, the fabrication of titania films can be achieved using cost-efficient solution chemistry combined with various coating or printing techniques. The practical implementation of these methods requires the preparation of a suitable ink with properly adjusted rheological properties.

View Article and Find Full Text PDF

The zeolitic imidazolate framework ZIF-8 (Zn(mim), mim = 2-methylimidazolate) has recently been proposed as a drug delivery platform for anticancer therapy based on its capability of decomposing in acidic media. The concept presumes a targeted release of encapsulated drug molecules in the vicinity of tumor tissues that typically produce secretions with elevated acidity. Due to challenges of and examination, many studies have addressed the kinetics of ZIF-8 decomposition and subsequent drug release in phosphate buffered saline (PBS) with adjusted acidity.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic is a big challenge for humanity. The COVID-19 severity differs significantly from patient to patient, and it is important to study the factors protecting from severe forms of the disease. Respiratory microbiota may influence the patient's susceptibility to infection and disease severity due to its ability to modulate the immune system response of the host organism.

View Article and Find Full Text PDF

Titanium dioxide (TiO) is one of the most widely used materials in resistive switching applications, including random-access memory, neuromorphic computing, biohybrid interfaces, and sensors. Most of these applications are still at an early stage of development and have technological challenges and a lack of fundamental comprehension. Furthermore, the functional memristive properties of TiO thin films are heavily dependent on their processing methods, including the synthesis, fabrication, and post-fabrication treatment.

View Article and Find Full Text PDF

This study addresses the inkjet printing approach for fabrication of cellulose nanocrystalline (CNC) patterns with tunable optical properties varied by the thickness of deposited layers. In particular, forming functional patterns visible only in linearly polarized light is of the primary interest. The possibility of controlling the bright iridescent color response associated with the birefringence in the chiral anisotropic structure of inkjet-printed layers of CNC with sulfo-groups (s-CNC) has been thoroughly investigated.

View Article and Find Full Text PDF

In this study we address a novel design of a planar memristor and investigate its biocompatibility. An experimental prototype of the proposed memristor assembly has been manufactured using a hybrid nanofabrication method, combining sputtering of electrodes, patterning the insulating trenches, and filling them with a memristive substance. To pattern the insulating trenches, we have examined two nanofabrication techniques employing either a focused ion beam or a cantilever tip of an atomic force microscope.

View Article and Find Full Text PDF

Drug delivery systems based on the zeolitic imidazolate framework ZIF-8 have recently attracted viable research interest owing to their capability of decomposing in acidic media and thus performing targeted drug delivery. In vivo realization of this mechanism faces a challenge of relatively slow decomposition rates, even at elevated acidic conditions that are barely achievable in diseased tissues. In this study we propose to combine drug delivery nanocomposites with a semiconductor photocatalytic agent that would be capable of inducing a local pH gradient in response to external electromagnetic radiation.

View Article and Find Full Text PDF

We report on an environmentally friendly and versatile aqueous chemical solution deposition route to epitaxial KNaNbO (KNN) thin films. The route is based on the spin coating of an aqueous solution of soluble precursors on SrTiO single crystal substrates followed by pyrolysis at 400°C and annealing at 800°C using rapid thermal processing. Strongly textured films with homogeneous thickness were obtained on three different crystallographic orientations of SrTiO.

View Article and Find Full Text PDF