Publications by authors named "Maxim M Totrov"

Malaria continues to be one of the deadliest diseases worldwide, and the emergence of drug resistance parasites is a constant threat. Plasmodium parasites utilize the methylerythritol phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are essential for parasite growth. Previously, we and others identified that the Malaria Box compound MMV008138 targets the apicoplast and that parasite growth inhibition by this compound can be reversed by supplementation of IPP.

View Article and Find Full Text PDF

Widespread pyrethroid resistance has caused an urgent need to develop new insecticides for control of the malaria mosquito, Anopheles gambiae. Insecticide discovery efforts were directed towards the construction of bivalent inhibitors that occupy both the peripheral and catalytic sites of the mosquito acetylcholinesterase (AChE). It was hypothesized that this approach would yield a selective, high potency inhibitor that would also circumvent known catalytic site mutations (e.

View Article and Find Full Text PDF

Potential targets for new vector control insecticides are nerve and muscle potassium channels. In this study, the activities of known potassium channel blockers (4-aminopyridine, quinidine, and tetraethylammonium) and the insecticide propoxur were compared to three experimental catechols and several other compounds against Anopheles gambiae and Aedes aegypti mosquitoes. Experimental catechol 1 was the most toxic experimental compound in all of the mortality assays conducted, but was at least 100-fold and 39-fold less toxic than propoxur against Ae.

View Article and Find Full Text PDF

Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE.

View Article and Find Full Text PDF

To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An.

View Article and Find Full Text PDF

Background: Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis. Previous expression of recombinant P. papatasi acetylcholinesterase (PpAChE1) revealed 85% amino acid sequence identity to mosquito AChE and identified synthetic carbamates that effectively inhibited PpAChE1 with improved specificity for arthropod AChEs compared to mammalian AChEs.

View Article and Find Full Text PDF

The cattle tick, (), and the sand fly, are disease vectors to cattle and humans, respectively. The purpose of this study was to characterize the inhibitor profile of acetylcholinesterases from (AChE1) and (AChE) compared to human and bovine AChE, in order to identify divergent pharmacology that might lead to selective inhibitors. Results indicate that AChE has low sensitivity (IC = 200 μM) toward tacrine, a monovalent catalytic site inhibitor with sub micromolar blocking potency in all previous species tested.

View Article and Find Full Text PDF

A series of bis(n)-tacrines were used as pharmacological probes of the acetylcholinesterase (AChE) catalytic and peripheral sites of Blattella germanica and Drosophila melanogaster, which express AChE-1 and AChE-2 isoforms, respectively. In general, the potency of bis(n)-tacrines was greater in D. melanogaster AChE (DmAChE) than in B.

View Article and Find Full Text PDF

To identify potential human-safe insecticides against the malaria mosquito we undertook an investigation of the structure-activity relationship of aryl methylcarbamates inhibitors of acetylcholinesterase (AChE). Compounds bearing a β-branched 2-alkoxy or 2-thioalkyl group were found to possess good selectivity for inhibition of Anopheles gambiae AChE over human AChE; up to 530-fold selectivity was achieved with carbamate 11d. A 3D QSAR model is presented that is reasonably consistent with log inhibition selectivity of 34 carbamates.

View Article and Find Full Text PDF

In the course of a β-site APP-cleaving enzyme 1 (BACE1) inhibitor discovery project an in situ synthesis/screening protocol was employed to prepare 120 triazole-linked reduced amide isostere inhibitors. Among these compounds, four showed modest (single digit micromolar) BACE1 inhibition. Our ligand design was based on a potent reduced amide isostere 1, wherein the P(2) amide moiety was replaced with an anti-1,2,3-triazole unit.

View Article and Find Full Text PDF

Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An.

View Article and Find Full Text PDF