Hemogenic endothelium (HE) has been recognized as a source of hematopoietic stem cells (HSCs) in the embryo. Access to human HE progenitors (HEPs) is essential for enabling the investigation of the molecular determinants of HSC specification. Here, we show that HEPs capable of generating definitive hematopoietic cells can be obtained from human pluripotent stem cells (hPSCs) and identified precisely by a VE-cadherin(+)CD73(-)CD235a/CD43(-) phenotype.
View Article and Find Full Text PDFGenetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free), and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs.
View Article and Find Full Text PDFCell Stem Cell
December 2010
Among the three embryonic germ layers, the mesoderm is a major source of the mesenchymal precursors giving rise to skeletal and connective tissues, but these precursors have not previously been identified and characterized. Using human embryonic stem cells directed toward mesendodermal differentiation, we show that mesenchymal stem/stromal cells (MSCs) originate from a population of mesodermal cells identified by expression of apelin receptor. In semisolid medium, these precursors form FGF2-dependent compact spheroid colonies containing mesenchymal cells with a transcriptional profile representative of mesoderm-derived embryonic mesenchyme.
View Article and Find Full Text PDFBasic research into human mature myelomonocytic cell function, myeloid lineage diversification and leukemic transformation, and assessment of myelotoxicity in preclinical drug development requires a constant supply of donor blood or bone marrow samples and laborious purification of mature myeloid cells or progenitors, which are present in very small quantities. To overcome these limitations, we have developed a protocol for efficient generation of neutrophils, eosinophils, macrophages, osteoclasts, DCs, and Langerhans cells from human embryonic stem cells (hESCs). As a first step, we generated lin-CD34+CD43+CD45+ hematopoietic cells highly enriched in myeloid progenitors through coculture of hESCs with OP9 feeder cells.
View Article and Find Full Text PDFMethods Mol Biol
June 2008
Embryonic stem cells represent a pluripotent population of cells capable of self-renewal, large-scale expansion, and differentiation in various cell lineages including cells of hematopoietic lineage. In this chapter, we describe a three-step cell culture method for directed differentiation of human embryonic stem cells (hESCs) to dendritic cells (DCs) that includes (1) hESC differentiation into hematopoietic progenitors by coculture with OP9 stromal cells, (2) expansion of myeloid DC precursors in suspension bulk cultures with granulocyte monocyte-colony stimulating factor (GM-CSF), and (3) differentiation of myeloid precursors to DCs in the serum-free medium with GM-CSF and interleukin-4 (IL-4). The method employs cell culture conditions selecting an almost pure population of myeloid DC precursors and does not require isolation of hematopoietic progenitors.
View Article and Find Full Text PDFAn important physiological function of vascular endothelial cells is to detect and respond to physical stimuli. While many efforts have been made to derive endothelial cells from human embryonic stem cells (hESCs), the ability of these derivatives to respond to mechanical forces has yet to be ascertained. hESC-derived endothelial cells (hEECs) were obtained by coculturing hESCs with OP9 stromal cells.
View Article and Find Full Text PDFCurr Protoc Cell Biol
September 2007
Human embryonic stem cells (hESCs) represent a unique population of cells capable of self-renewal and differentiation into all types of somatic cells, including hematopoietic and endothelial cells. Since the pattern of hematopoietic and endothelial development observed in the embryo can be reproduced using ESCs differentiated in culture, hESCs can be used as a model for studies of specification and diversification of hematoendothelial progenitors. In addition, hESCs can be seen as a scalable source of hematopoietic and endothelial cells for in vitro studies.
View Article and Find Full Text PDFSomatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers.
View Article and Find Full Text PDFDuring hematopoietic differentiation of human embryonic stem cells (hESCs), early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays, their phenotype has not been defined. Here, using hESC differentiation in coculture with OP9 stromal cells, we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43).
View Article and Find Full Text PDFWe have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells.
View Article and Find Full Text PDFProblem: Tumor necrosis factor (TNF) and soluble TNF receptors (sTNF-Rs) system related with Th1 and Th2 and activity of NF-kappaB/IkappaB regulatory system. This study was designed to compare sTNF-R1 and sTNF-R2 production (shedding) and levels of late activated CD8+ T-lymphocytes in non-pregnant (n = 30) and pregnant (n = 20) normal women and non-pregnant (n = 20) and pregnant (n = 30) RSA women. Effects of progesterone (natural structure) injections in RSA women were studied.
View Article and Find Full Text PDFHere, we examine the ability of undifferentiated human embryonic stem cells (hESCs) to reprogram the nuclei of hESC-derived myeloid precursors following cell-cell fusion. Using an OP9 coculture system, we produced CD45+ CD33+ myeloperoxidase+ myeloid precursors from an Oct4-enhanced green fluorescent protein (EGFP) knock-in hESC line and demonstrated that Oct4-EGFP expression was extinguished in these precursors. Upon fusion with undifferentiated hESCs, EGFP expression from the endogenous Oct4 promoter/regulatory region was re-established, ESC-specific surface antigens and marker genes were expressed, and myeloid precursor-specific antigens were no longer detectable.
View Article and Find Full Text PDFEmbryonic stem (ES) cells have the potential to serve as an alternative source of hematopoietic precursors for transplantation and for the study of hematopoietic cell development. Using coculture of human ES (hES) cells with OP9 bone marrow stromal cells, we were able to obtain up to 20% of CD34+ cells and isolate up to 10(7) CD34+ cells with more than 95% purity from a similar number of initially plated hES cells after 8 to 9 days of culture. The hES cell-derived CD34+ cells were highly enriched in colony-forming cells, cells expressing hematopoiesis-associated genes GATA-1, GATA-2, SCL/TAL1, and Flk-1, and retained clonogenic potential after in vitro expansion.
View Article and Find Full Text PDFNegative correlation between serum IgE levels and production of IFN-gamma by lymphocytes and positive correlation between serum IgE levels and production of IL-4 by lymphocytes was detected in 12 children with allergic asthma and recurrent respiratory diseases. Deficiency of reduced glutathione in whole blood and some disorders in phagocytic and oxidative burst activity of monocytes were observed in these children. Use of reduced glutathione, L-cysteine and anthocyane (Recancostat, Clear Vision, Switzerland) resulted in elevation of IFN-gamma production, lymphocyte response to mitogens, NK cell activity, increase in percentage of naive CD4(+) T lymphocytes (refreshment effect) and improvement of clinical status.
View Article and Find Full Text PDF