Background And Aims: Although chronic HCV infection increases mortality, thousands of patients remain diagnosed-but-untreated (DBU). We aimed to (1) develop a DBU phenotyping algorithm, (2) use it to facilitate case finding and linkage to care, and (3) identify barriers to successful treatment.
Approach And Results: We developed a phenotyping algorithm using Java and SQL and applied it to ~2.
Non-alcoholic fatty liver disease (NAFLD) is a complex heterogeneous disease which affects more than 20% of the population worldwide. Some subtypes of NAFLD have been clinically identified using hypothesis-driven methods. In this study, we used data mining techniques to search for subtypes in an unbiased fashion.
View Article and Find Full Text PDF