Bacterial biofilms can form in porous media that are of interest in industrial applications ranging from medical implants to biofilters as well as in environmental applications such as in situ groundwater remediation, where they can be critical locations for biogeochemical reactions. The presence of biofilms modifies porous media topology and hydrodynamics by clogging pores and consequently solutes transport and reactions kinetics. The interplay between highly heterogeneous flow fields found in porous media and microbial behavior, including biofilm growth, results in a spatially heterogeneous biofilm distribution in the porous media as well as internal heterogeneity across the thickness of the biofilm.
View Article and Find Full Text PDFThis study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth.
View Article and Find Full Text PDFX-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology.
View Article and Find Full Text PDF