Publications by authors named "Max Zhan"

In the presence of alcohol, cocaine metabolism produces a number of metabolites, including three toxic ones (cocaethylene, norcocaine, and norcocaethylene) which are all more toxic than cocaine itself, with the toxicity in the order of cocaine < cocaethylene < norcocaine < norcocaethylene. In this study, we performed kinetic analysis on our previously reported cocaine hydrolase (E30-6) for its catalytic activities accelerating the hydrolysis of the three toxic metabolites in comparison with cocaine. Based on the obtained kinetic data, the catalytic efficiencies of the enzyme against these substrates are in the order of cocaine > cocaethylene > norcocaine > norcocaethylene.

View Article and Find Full Text PDF

A majority of cocaine users also consume alcohol. The concurrent use of cocaine and alcohol produces the pharmacologically active metabolites cocaethylene and norcocaethylene, in addition to norcocaine. Both cocaethylene and norcocaethylene are more toxic than cocaine itself.

View Article and Find Full Text PDF

Cocaine is one of the most addictive drugs without a U.S. Food and Drug Administration (FDA)-approved medication.

View Article and Find Full Text PDF

It is known that the majority of cocaine users also consume alcohol. Alcohol can react with cocaine to produce a significantly more cytotoxic compound, cocaethylene. Hence a truly valuable cocaine-metabolizing enzyme as treatment for cocaine abuse/overdose should be efficient for not only cocaine itself, but also cocaethylene.

View Article and Find Full Text PDF

Compared with naturally occurring enzymes, computationally designed enzymes are usually much less efficient, with their catalytic activities being more than six orders of magnitude below the diffusion limit. Here we use a two-step computational design approach, combined with experimental work, to design a highly efficient cocaine hydrolysing enzyme. We engineer E30-6 from human butyrylcholinesterase (BChE), which is specific for cocaine hydrolysis, and obtain a much higher catalytic efficiency for cocaine conversion than for conversion of the natural BChE substrate, acetylcholine (ACh).

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) has been an important protein used for development of anti-cocaine medication. Through computational design, BChE mutants with ∼2000-fold improved catalytic efficiency against cocaine have been discovered in our lab. To study drug-enzyme interaction it is important to build mathematical model to predict molecular inhibitory activity against BChE.

View Article and Find Full Text PDF

It has been known that cocaine produces its toxic and physiological effects through not only cocaine itself, but also norcocaine formed from cocaine oxidation catalysed by microsomal CYP (cytochrome P450) 3A4 in the human liver. The catalytic parameters (kcat and Km) of human BChE (butyrylcholinesterase) and its three mutants (i.e.

View Article and Find Full Text PDF

Purpose: The aim of this study was to correlate the relationship between the pharmacokinetic behaviors and the toxicity of a new investigational anticancer agent CZ48, a C20-propionate ester of camptothecin (CPT) in mice.

Methods: In this study, the safety and pharmacokinetics of oral doses of CZ48 were compared with the oral doses of CPT. Mice were administered orally one of three single doses of CZ48 (50, 200 and 1000 mg/kg) and two single doses of CPT (1.

View Article and Find Full Text PDF