Background: Boolean Networks (BNs) are a popular dynamical model in biology where the state of each component is represented by a variable taking binary values that express, for instance, activation/deactivation or high/low concentrations. Unfortunately, these models suffer from the state space explosion, i.e.
View Article and Find Full Text PDFClin Transl Discov
September 2022
Background: The global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has swept through every part of the world. Because of its impact, international efforts have been underway to identify the variants of SARS-CoV-2 by genome sequencing and to understand the gene expression changes in COVID-19 patients compared to healthy donors using RNA sequencing (RNA-seq) assay. Within the last two and half years since the emergence of SARS-CoV-2, a large number of OMICS data of COVID-19 patients have accumulated.
View Article and Find Full Text PDFMotivation: Stochastic reaction networks are a widespread model to describe biological systems where the presence of noise is relevant, such as in cell regulatory processes. Unfortunately, in all but simplest models the resulting discrete state-space representation hinders analytical tractability and makes numerical simulations expensive. Reduction methods can lower complexity by computing model projections that preserve dynamics of interest to the user.
View Article and Find Full Text PDFOrdinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network.
View Article and Find Full Text PDFCells operate in noisy molecular environments via complex regulatory networks. It is possible to understand how molecular counts are related to noise in specific networks, but it is not generally clear how noise relates to network complexity, because different levels of complexity also imply different overall number of molecules. For a fixed function, does increased network complexity reduce noise, beyond the mere increase of overall molecular counts? If so, complexity could provide an advantage counteracting the costs involved in maintaining larger networks.
View Article and Find Full Text PDF