NF-κB-inducing kinase (NIK) is a key enzyme in the noncanonical NF-κB pathway, of interest in the treatment of a variety of diseases including cancer. Validation of NIK as a drug target requires potent and selective inhibitors. The protein contains a cysteine residue at position 444 in the back pocket of the active site, unique within the kinome.
View Article and Find Full Text PDFGlycans are major nutrients available to the human gut microbiota. The are generalist glycan degraders, and this function is mediated largely by polysaccharide utilization loci (PULs). The genomes of several species contain a PUL, PUL, that was predicted to target mixed linked plant 1,3;1,4-β-glucans.
View Article and Find Full Text PDFα-Mannosidases and α-mannanases have attracted attention for the insight they provide into nucleophilic substitution at the hindered anomeric center of α-mannosides, and the potential of mannosidase inhibitors as cellular probes and therapeutic agents. We report the conformational itinerary of the family GH76 α-mannanases studied through structural analysis of the Michaelis complex and synthesis and evaluation of novel aza/imino sugar inhibitors. A Michaelis complex in an (O) S2 conformation, coupled with distortion of an azasugar in an inhibitor complex to a high energy B2,5 conformation are rationalized through ab initio QM/MM metadynamics that show how the enzyme surface restricts the conformational landscape of the substrate, rendering the B2,5 conformation the most energetically stable on-enzyme.
View Article and Find Full Text PDFYeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
February 2013
The rumen anaerobic cellulolytic bacterium Eubacterium cellulosolvens produces a large range of cellulases and hemicellulases responsible for the efficient hydrolysis of plant cell wall polysaccharides. One of these enzymes, endoglucanase Cel5A, comprises a tandemly repeated carbohydrate-binding module (CBM65) fused to a glycoside hydrolase family 5 (Cel5A) catalytic domain, joined by flexible linker sequences. The second carbohydrate-binding module located at the C-terminus side of the endoglucanase (CBM65B) has been co-crystallized with either cellohexaose or xyloglucan heptasaccharide.
View Article and Find Full Text PDFPlant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides.
View Article and Find Full Text PDF