Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event.
View Article and Find Full Text PDFCurrently, drug discovery approaches focus on the design of therapies that alleviate an index symptom by reengineering the underlying biological mechanism in agonistic or antagonistic fashion. For example, medicines are routinely developed to target an essential gene that drives the disease mechanism. Therapeutic overloading where patients get multiple medications to reduce the primary and secondary side effect burden is standard practice.
View Article and Find Full Text PDFIncrease in global population and growing disease burden due to the emergence of infectious diseases (Zika virus), multidrug-resistant pathogens, drug-resistant cancers (cisplatin-resistant ovarian cancer) and chronic diseases (arterial hypertension) necessitate effective therapies to improve health outcomes. However, the rapid increase in drug development cost demands innovative and sustainable drug discovery approaches. Drug repositioning, the discovery of new or improved therapies by reevaluation of approved or investigational compounds, solves a significant gap in the public health setting and improves the productivity of drug development.
View Article and Find Full Text PDFObjective: To design, develop and prototype clinical dashboards to integrate high-frequency health and wellness data streams using interactive and real-time data visualisation and analytics modalities.
Materials And Methods: We developed a clinical dashboard development framework called electronic healthcare data visualization (EHDViz) toolkit for generating web-based, real-time clinical dashboards for visualising heterogeneous biomedical, healthcare and wellness data. The EHDViz is an extensible toolkit that uses R packages for data management, normalisation and producing high-quality visualisations over the web using R/Shiny web server architecture.