Black phosphorus (BP) has been established as a promising material for room temperature midwave infrared (MWIR) photodetectors. However, many of its attractive optoelectronic properties are often observable only at smaller film thicknesses, which inhibits photodetector absorption and performance. In this work, we show that metasurface gratings increase the absorption of BP-MoS heterojunction photodiodes over a broad range of wavelengths in the MWIR.
View Article and Find Full Text PDFBlack phosphorus (BP) has emerged as a promising materials system for mid-wave infrared photodetection because of its moderate bandgap, high carrier mobility, substrate compatibility, and bandgap tunability. However, its uniquely tunable bandgap can only be taken advantage of with thin layer thicknesses, which ultimately limits the optical absorption of a BP photodetector. This work demonstrates an absorption-boosting resonant metal-insulator-metal (MIM) metasurface grating integrated with a thin-film BP photodetector.
View Article and Find Full Text PDFBackground: Remote monitoring of plants using hyperspectral imaging has become an important tool for the study of plant growth, development, and physiology. Many applications are oriented towards use in field environments to enable non-destructive analysis of crop responses due to factors such as drought, nutrient deficiency, and disease, e.g.
View Article and Find Full Text PDF