Uveal melanoma (UM) is the most common primary intraocular malignancy with a limited five-year survival for metastatic patients. Limited therapeutic treatments are currently available for metastatic disease, even if the genomics of this tumor has been deeply studied using next-generation sequencing (NGS) and functional experiments. The profound knowledge of the molecular features that characterize this tumor has not led to the development of efficacious therapies, and the survival of metastatic patients has not changed for decades.
View Article and Find Full Text PDFThere is a growing number of multi-domain genomic datasets for human tumors. Multi-domain data are usually interpreted after separately analyzing single-domain data and integrating the results post hoc. Data fusion techniques allow for the real integration of multi-domain data to ideally improve the tumor classification results for the prognosis and prediction of response to therapy.
View Article and Find Full Text PDFUveal melanoma (UM) is a rare cancer that is well characterized at the molecular level. Two to four classes have been identified by the analyses of gene expression (mRNA, ncRNA), DNA copy number, DNA-methylation and somatic mutations yet no factual integration of these data has been reported. We therefore applied novel algorithms for data fusion, joint Singular Value Decomposition (jSVD) and joint Constrained Matrix Factorization (jCMF), as well as similarity network fusion (SNF), for the integration of gene expression, methylation and copy number data that we applied to the Cancer Genome Atlas (TCGA) UM dataset.
View Article and Find Full Text PDFCitizen science programs are increasingly popular for a variety of reasons, from public education to new opportunities for data collection. The literature published in scientific journals resulting from these projects represents a particular perspective on the process. These articles often conclude with recommendations for increasing "success".
View Article and Find Full Text PDF