Aims: Deep neural networks (DNNs) perform excellently in interpreting electrocardiograms (ECGs), both for conventional ECG interpretation and for novel applications such as detection of reduced ejection fraction (EF). Despite these promising developments, implementation is hampered by the lack of trustworthy techniques to explain the algorithms to clinicians. Especially, currently employed heatmap-based methods have shown to be inaccurate.
View Article and Find Full Text PDFBackground: ECG interpretation requires expertise and is mostly based on physician recognition of specific patterns, which may be challenging in rare cardiac diseases. Deep neural networks (DNNs) can discover complex features in ECGs and may facilitate the detection of novel features which possibly play a pathophysiological role in relatively unknown diseases. Using a cohort of PLN (phospholamban) p.
View Article and Find Full Text PDF