J Phys Chem Lett
February 2022
Internal conversion from the photoexcited state to a correlated singlet triplet-pair state is believed to be the precursor of singlet fission in carotenoids. We present numerical simulations of this process using a π-electron model that fully accounts for electron-electron interactions and electron-nuclear coupling. The time-evolution of the electrons is determined rigorously using the time-dependent density matrix renormalization group method, while the nuclei are evolved the Ehrenfest equations of motion.
View Article and Find Full Text PDFWe present a model-independent measure of dynamical complexity based on simulation of complex quantum dynamics using stroboscopic Markovian dynamics. Tools from classical signal processing enable us to infer the Hilbert space dimension of the complex quantum system evolving under a time-independent Hamiltonian via pulsed interrogation. We illustrate this using simulated third-order pump-probe spectroscopy data for exciton transport in a toy model of a coupled dimer with vibrational levels, revealing the dimension of the singly excited manifold of the dimer.
View Article and Find Full Text PDFThe role of quantum effects in excitonic energy transport (EET) has been scrutinised intensely and with increasingly sophisticated experimental techniques. This increased complexity requires invoking correspondingly elaborate models to fit spectroscopic data before molecular parameters can be extracted. Possible quantum effects in EET can then be studied, but the conclusions are strongly contingent on the efficacy of the fitting and the accuracy of the model.
View Article and Find Full Text PDFThe Frenkel-Holstein model in the Born-Oppenheimer regime is used to interpret temperature-dependent photoluminescence spectra of solutions made with the poly(p-phenylene vinylene) derivative MEH-PPV. Using our recently developed structural optimization method and assuming only intrachain electronic coupling, we predict the structure of emissive MEH-PPV chromophores in terms of a mean torsional angle ϕ and its static fluctuations σ, assuming no cis-trans defects. This allows us to fully account for the observed changes in spectra, and the chromophore structures obtained are consistent with the known phase transition at 180 K between a "red" and "blue" phase.
View Article and Find Full Text PDFWe use a Frenkel-Holstein model of uncoupled chains in the adiabatic limit to simulate the optical spectra of the conjugated polymer ladder-type poly( p-phenylene) derivative (MeLPPP), which is a planar conjugated polymer with especially low interchain interactions. The theoretical calculations correctly reproduce the vibronic spectra and yield reasonable torsion angles between adjacent phenyl rings. The success of this approach indicates that, in contrast to interchain coupling, the strong electronic coupling along a polymer chain is more appropriately described in the adiabatic limit.
View Article and Find Full Text PDFExciton delocalization in conjugated polymer systems is determined by polymer conformations and packing. Since exciton delocalization determines the photoluminescent vibronic progression, optical spectroscopy provides an indirect link to polymer multiscale structures. This perspective describes our current theoretical understanding of how exciton delocalization in π-conjugated polymers determines their optical spectroscopy and further shows how exciton delocalization is related to conformational and environmental disorder.
View Article and Find Full Text PDFUsing first order perturbation theory in the Born-Oppenheimer regime of the Frenkel-Holstein model, we develop a theory for the optical transitions in curved chromophores of π-conjugated polymers. Our key results are that for absorption, A, and emission, I, polarized parallel to the 0-0 transition, I/I ≃ A/A = S(N), where S(N) = S(1)/IPR is the effective Huang-Rhys parameter for a chromophore of N monomers and IPR is the inverse participation ratio. In contrast, absorption and emission polarized perpendicular to the 0-0 transition acquires vibronic intensity via the Herzberg-Teller effect.
View Article and Find Full Text PDFWe describe a theoretical and computational investigation of the optical properties of π-conjugated macrocycles. Since the low-energy excitations of these systems are Frenkel excitons that couple to high-frequency dispersionless phonons, we employ the quantized Frenkel-Holstein model and solve it via the density matrix renormalization group (DMRG) method. First we consider optical emission from perfectly circular systems.
View Article and Find Full Text PDFUsing both analytical expressions and the density matrix renormalization group method, we study the fully quantized disordered Holstein model to investigate the localization of charges and excitons by vibrational or torsional modes-i.e., the formation of polarons-in conformationally disordered π-conjugated polymers.
View Article and Find Full Text PDFThe theory of optical transitions developed in Barford and Marcus ["Theory of optical transitions in conjugated polymers. I. Ideal systems," J.
View Article and Find Full Text PDFWe describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model.
View Article and Find Full Text PDFThe purpose of this study was to determine the role of long-chain fatty acyl-CoA synthetase 4 (ACSL4) in breast cancer. Public databases were utilized to analyze the relationship between ACSL4 mRNA expression and the presence of steroid hormone and human epidermal growth factor receptor 2 (HER2) in both breast cancer cell lines and tissue samples. In addition, cell lines were utilized to assess the consequences of either increased or decreased levels of ACSL4 expression.
View Article and Find Full Text PDFThe reaction of elemental Mn, Fe, and Zn with Te in liquid ammonia at 50 °C leads to the polytellurides [Mn(NH3)6]Te4 (1), [Fe(NH3)6]Te4·NH3 (2), and [Zn(NH3)4]2Te15 (3) in quantitative yield for 1 and 3, and in 30-50% yield for 2. The compounds form black crystals, which are air sensitive and easily lose ammonia without a protective atmosphere of NH3. Compound 3 is semiconducting with a thermal activation energy of 1.
View Article and Find Full Text PDFProtein fold is defined by a spatial arrangement of three types of secondary structures (SSs) including helices, sheets, and coils/loops. Current methods that predict SS from sequences rely on complex machine learning-derived models and provide the three-state accuracy (Q3) at about 82%. Further improvements in predictive quality could be obtained with a consensus-based approach, which so far received limited attention.
View Article and Find Full Text PDF