Mol Biol Rep
October 2020
The Eph (erythropoietin-producing human hepatocellular) receptors form the largest known subfamily of receptor tyrosine kinases. These receptors interact with membrane-bound ephrin ligands via direct cell-cell interactions resulting in bi-directional activation of signal pathways. Importantly, the Eph receptors play critical roles in embryonic tissue organization and homeostasis, and in the maintenance of adult processes such as long-term potentiation, angiogenesis, and stem cell differentiation.
View Article and Find Full Text PDFThe erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that is part of the family of tyrosine kinase receptors. The binding of EGFR to its cognate ligands leads to its autophosphorylation and subsequent activation of the signal transduction pathways involved in regulating cellular proliferation, differentiation, and survival. Accordingly, this receptor carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues.
View Article and Find Full Text PDFGlioblastoma (GBM) carries a dismal prognosis and inevitably relapses despite aggressive therapy. Many members of the Eph receptor tyrosine kinase (EphR) family are expressed by GBM stem cells (GSC), which have been implicated in resistance to GBM therapy. In this study, we identify several EphRs that mark a therapeutically targetable GSC population in treatment-refractory, recurrent GBM (rGBM).
View Article and Find Full Text PDF