Publications by authors named "Max Keuken"

The subthalamic nucleus (STN) is a small, subcortical brain structure. It is a target for deep brain stimulation, an invasive treatment that reduces motor symptoms of Parkinson's disease. Side effects of DBS are commonly explained using the tripartite model of STN organization, which proposes three functionally distinct subregions in the STN specialized in cognitive, limbic, and motor processing.

View Article and Find Full Text PDF

We present the first three-dimensional (3D) concordance maps of cyto- and fiber architecture of the human brain, combining histology, immunohistochemistry, and 7-T quantitative magnetic resonance imaging (MRI), in two individual specimens. These 3D maps each integrate data from approximately 800 microscopy sections per brain, showing neuronal and glial cell bodies, nerve fibers, and interneuronal populations, as well as ultrahigh-field quantitative MRI, all coaligned at the 200-μm scale to the stacked blockface images obtained during sectioning. These unprecedented 3D multimodal datasets are shared without any restrictions and provide a unique resource for the joint study of cell and fiber architecture of the brain, detailed anatomical atlasing, or modeling of the microscopic underpinnings of MRI contrasts.

View Article and Find Full Text PDF

In order to further our understanding of brain function and the underlying networks, more advanced diffusion weighted magnetic resonance imaging (DWI MRI) data are essential. Here we present freely available high-resolution multi-shell multi-directional 3 Tesla (T) DWI MRI data as part of the 'Amsterdam Ultra-high field adult lifespan database' (AHEAD). The 3T DWI AHEAD dataset include 1.

View Article and Find Full Text PDF

The human subcortex comprises hundreds of unique structures. Subcortical functioning is crucial for behavior, and disrupted function is observed in common neurodegenerative diseases. Despite their importance, human subcortical structures continue to be difficult to study in vivo.

View Article and Find Full Text PDF

Deep Brain Stimulation (DBS) is an effective neurosurgical treatment to alleviate motor symptoms of advanced Parkinson's disease. Due to its potential, DBS usage is rapidly expanding to target a large number of brain regions to treat a wide range of diseases and neuropsychiatric disorders. The identification and validation of new target regions heavily rely on the insights gained from rodent and primate models.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective surgical treatment for Parkinson's disease (PD). Side-effects may, however, be induced when the DBS lead is placed suboptimally. Currently, lower field magnetic resonance imaging (MRI) at 1.

View Article and Find Full Text PDF

magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of MRI. It facilitates a link between functional and anatomical information available from MRI and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking and MRI to microscopy techniques poses substantial challenges.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) of the subthalamic nucleus is a neurosurgical intervention for Parkinson's disease patients who no longer appropriately respond to drug treatments. A small fraction of patients will fail to respond to DBS, develop psychiatric and cognitive side-effects, or incur surgery-related complications such as infections and hemorrhagic events. In these cases, DBS may require recalibration, reimplantation, or removal.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) is successfully used as a surgical target for deep brain stimulation in the treatment of movement disorders. Interestingly, the internal structure of the STN is still incompletely understood. The objective of the present study was to investigate three-dimensional (3D) immunoreactivity patterns for 12 individual protein markers for GABA-ergic, serotonergic, dopaminergic as well as glutamatergic signaling.

View Article and Find Full Text PDF

Magnetic resonance imaging studies typically use standard anatomical atlases for identification and analyses of (patho-)physiological effects on specific brain areas; these atlases often fail to incorporate neuroanatomical alterations that may occur with both age and disease. The present study utilizes Parkinson's disease and age-specific anatomical atlases of the subthalamic nucleus for diffusion tractography, assessing tracts that run between the subthalamic nucleus and a-priori defined cortical areas known to be affected by Parkinson's disease. The results show that the strength of white matter fiber tracts appear to remain structurally unaffected by disease.

View Article and Find Full Text PDF

Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease.

View Article and Find Full Text PDF

How, and to what extent do size and shape of a voxel measured with magnetic resonance imaging (MRI) affect the ability to visualize small brain nuclei? Despite general consensus that voxel geometry affects volumetric properties of regions of interest, particularly those of small brain nuclei, no quantitative data on the influence of voxel size and shape on labeling accuracy is available. Using simulations, we investigated the selective influence of voxel geometry by reconstructing simulated ellipsoid structures with voxels varying in shape and size. For each reconstructed ellipsoid, we calculated differences in volume and similarity between the labeled volume and the predefined dimensions of the ellipsoid.

View Article and Find Full Text PDF

The locus coeruleus is a small brainstem nucleus which contains neuromelanin cells and is involved in a number of cognitive functions such as attention, arousal and stress, as well as several neurological and psychiatric disorders. Locus coeruleus imaging in vivo is generally performed using a T1-weighted turbo spin echo MRI sequence at 3 Tesla (T). However, imaging at high magnetic field strength can increase the signal-to-noise ratio and offers the possibility of imaging at higher spatial resolution.

View Article and Find Full Text PDF

Currently little is known about structure-function mappings in the human subcortex. Here we present a large-scale automated meta-analysis on the literature to understand the structure-function mapping in the human subcortex. The results provide converging evidence into unique large scale structure-function mappings of the human subcortex based on their functional and anatomical similarity.

View Article and Find Full Text PDF

Within the cortico basal ganglia (BG)-thalamic network, the direct and indirect pathways comprise of projections from the cortex to the striatum (STR), whereas the hyperdirect pathway(s) consist of cortical projections toward the subthalamic nucleus (STN). Each pathway possesses a functionally distinct role for action selection. The current study quantified and compared the structural connectivity between 17 distinct cortical areas with the STN and STR using 7 Tesla diffusion weighted magnetic resonance imaging (dMRI) and resting-state functional MRI (rs-fMRI) in healthy young subjects.

View Article and Find Full Text PDF

The locus coeruleus (LC) is a brainstem nucleus involved in important cognitive functions. Recent developments in neuroimaging methods and scanning protocols have made it possible to visualize the human LC in vivo by utilizing a T-weighted turbo spin echo (TSE) scan. Despite its frequent use and its application as a biomarker for tracking the progress of monoaminergic-related neurodegenerative diseases, no study to date has investigated the reproducibility and inter-observer variability of LC identification using this TSE scan sequence.

View Article and Find Full Text PDF

The subthalamic nucleus (STN) plays a crucial role in the surgical treatment of Parkinson's disease (PD). Studies investigating optimal protocols for STN visualization using state of the art magnetic resonance imaging (MRI) techniques have shown that susceptibility weighted images, which display the magnetic susceptibility distribution, yield better results than T1-weighted, T2-weighted, and T2*-weighted contrasts. However, these findings are based on young healthy individuals, and require validation in elderly individuals and persons suffering from PD.

View Article and Find Full Text PDF

The basal ganglia (BG) form a network of subcortical nuclei. Functional magnetic resonance imaging (fMRI) in the BG could provide insight in its functioning and the underlying mechanisms of Deep Brain Stimulation (DBS). However, fMRI of the BG with high specificity is challenging, because the nuclei are small and variable in their anatomical location.

View Article and Find Full Text PDF

The human subcortex is a densely populated part of the brain, of which only 7% of the individual structures are depicted in standard MRI atlases. In vivo MRI of the subcortex is challenging owing to its anatomical complexity and its deep location in the brain. The technical advances that are needed to reliably uncover this 'terra incognita' call for an interdisciplinary human neuroanatomical approach.

View Article and Find Full Text PDF

With recent developments in MR acquisition at 7T, smaller brainstem structures such as the red nuclei, substantia nigra and subthalamic nuclei can be imaged with good contrast and resolution. These structures have important roles both in the study of the healthy brain and in diseases such as Parkinson's disease, but few methods have been described to automatically segment them. In this paper, we extend a method that we have previously proposed for segmentation of the striatum and globus pallidus to segment these deeper and smaller structures.

View Article and Find Full Text PDF

Accurate segmentation of the subcortical structures is frequently required in neuroimaging studies. Most existing methods use only a T1-weighted MRI volume to segment all supported structures and usually rely on a database of training data. We propose a new method that can use multiple image modalities simultaneously and a single reference segmentation for initialisation, without the need for a manually labelled training set.

View Article and Find Full Text PDF