J Phys Condens Matter
January 2020
Quantum spin liquids are long-range entangled phases whose magnetic correlations are determined by strong quantum fluctuations. While an overarching principle specifying the precise microscopic coupling scenarios for which quantum spin-liquid behavior arises is unknown, it is well-established that they are preferably found in spin systems where the corresponding classical limit of spin magnitudes [Formula: see text] exhibits a macroscopic ground state degeneracy, so-called classical spin liquids. Spiral spin liquids represent a special family of classical spin liquids where degenerate manifolds of spin spirals form closed contours or surfaces in momentum space.
View Article and Find Full Text PDFMotivated by the recent synthesis of the spin-1 A-site spinel NiRh_{2}O_{4}, we investigate the classical to quantum crossover of a frustrated J_{1}-J_{2} Heisenberg model on the diamond lattice upon varying the spin length S. Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S≥3/2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S=1 or S=1/2, we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces.
View Article and Find Full Text PDF