Targeted therapies have shown striking success in the treatment of cancer over the last years. However, their specific effects on an individual tumor appear to be varying and difficult to predict. Using an integrative modeling approach that combines mechanistic and regression modeling, we gained insights into the response mechanisms of breast cancer cells due to different ligand-drug combinations.
View Article and Find Full Text PDFHER3 is highly expressed in luminal breast cancer subtypes. Its activation by NRG1 promotes activation of AKT and ERK1/2, contributing to tumour progression and therapy resistance. HER3-targeting agents that block this activation, are currently under phase 1/2 clinical studies, and although they have shown favorable tolerability, their activity as a single agent has proven to be limited.
View Article and Find Full Text PDFPurpose: Antibody-dependent cell-mediated cytotoxicity (ADCC) is one mechanism of action of the monoclonal antibody (mAb) therapies trastuzumab and pertuzumab. Tyrosine kinase inhibitors (TKIs), like lapatinib, may have added therapeutic value in combination with mAbs through enhanced ADCC activity. Using clinical data, we examined the impact of lapatinib on HER2/EGFR expression levels and natural killer (NK) cell gene signatures.
View Article and Find Full Text PDFESMO Open
July 2019
Purpose: This study investigated the safety and clinical activity of lumretuzumab, a humanised antihuman epidermal growth factor receptor 3 (HER3) monoclonal antibody, in combination with carboplatin and paclitaxel in first-line treatment of patients with squamous non-small cell lung cancer (sqNSCLC). HER3 ligand heregulin and HER3 protein expression were evaluated as potential biomarkers of clinical activity.
Patients And Methods: This open-label, phase Ib/II study enrolled patients receiving lumretuzumab at 800 mg (flat) in combination with carboplatin (area under the curve (AUC) 6 mg/mL×min) and paclitaxel (200 mg/m) administered intravenously on a every 3-week schedule.
The quality control testing of chemical degradations in the bio-pharmaceutical industry is currently under controversial debate. Here we have systematically applied in vitro and in vivo stress conditions to investigate the influence of protein degradation on structure-function. Extensive purification and characterization enabled identification and functional assessment of the physiological degradation of chemical modification sites in the variable complementarity-determining regions (CDRs) and conserved region of trastuzumab.
View Article and Find Full Text PDFThe human epidermal growth factor receptor (HER) family consists of four transmembrane receptor tyrosine kinases: epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. They are part of a complex signalling network and stimulate intracellular pathways regulating cell growth and differentiation. So far, monoclonal antibodies (mAbs) and small molecule tyrosine kinase inhibitors targeting EGFR and HER2 have been developed and approved.
View Article and Find Full Text PDFCombination of targeted therapies is expected to provide superior efficacy in the treatment of cancer either by enhanced antitumor activity or by preventing or delaying the development of resistance. Common challenges in developing combination therapies include the potential of additive and aggravated toxicities associated with pharmacologically related adverse effects. We have recently reported that combination of anti-HER2 and anti-HER3 antibodies, pertuzumab and lumretuzumab, along with paclitaxel chemotherapy in metastatic breast cancer, resulted in a high incidence of diarrhea that ultimately limited further clinical development of this combination.
View Article and Find Full Text PDFUnlabelled: Purpose To investigate the safety and clinical activity of comprehensive human epidermal growth factor receptor (HER) family receptor inhibition using lumretuzumab (anti-HER3) and pertuzumab (anti-HER2) in combination with paclitaxel in patients with metastatic breast cancer (MBC). Methods This phase Ib study enrolled 35 MBC patients (first line or higher) with HER3-positive and HER2-low (immunohistochemistry 1+ to 2+ and in-situ hybridization negative) tumors. Patients received lumretuzumab (1000 mg in Cohort 1; 500 mg in Cohorts 2 and 3) plus pertuzumab (840 mg loading dose [LD] followed by 420 mg in Cohorts 1 and 2; 420 mg without LD in Cohort 3) every 3 weeks, plus paclitaxel (80 mg/m weekly in all cohorts).
View Article and Find Full Text PDFBidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo.
View Article and Find Full Text PDFTruncated forms of HER2, previously identified in subsets of HER2-positive breast cancer, originate from proteolytic extracellular domain (ECD) cleavage or alternative translation initiation. They lack ECD but may retain intracellular domain functionality, potentially associated with unfavorable prognosis, metastasis, and decreased sensitivity to antibody-based HER2-targeted therapy. To study the distribution of truncated HER2 in breast cancer, we detected loss of membrane-bound ECD independently of its molecular origin in paraffin sections, combining multispectral unmixing of chromogenic duplex IHC for HER2 ECD and intracellular domain with advanced image analysis.
View Article and Find Full Text PDFOverexpression of ErbB2 and ErbB3 is found in several human cancers, and ErbB2-ErbB3 heterodimers are known as the most potent signaling units among ErbB dimers. While ErbB2 probably undergoes weak endocytosis, ErbB3 is readily internalized even in the absence of added ligand and without requirement for kinase activity. Overexpression of ErbB2 has been demonstrated to inhibit epidermal growth factor-induced internalization and degradation of epidermal growth factor receptor.
View Article and Find Full Text PDFCancer Treat Rev
December 2013
Trastuzumab-containing therapy is a standard of care for human epidermal growth factor receptor-2 (HER2)-positive breast cancer. In pre-clinical models, a wide range of molecular mechanisms have been associated with reduced sensitivity to trastuzumab in vitro. These include expression of the truncated HER2 receptor fragment p95HER2, activating mutation of the gene encoding the class 1A catalytic subunit of phosphatidylinositol 3-kinase (PIK3CA), loss of phosphatase and tensin homolog (PTEN), activation of other downstream signal transducers, prevention of cell cycle arrest, increased signaling through alternative (HER or non-HER) tyrosine kinase receptors, and resistance to antibody-dependent cellular cytotoxicity.
View Article and Find Full Text PDFThe therapeutic potential of anticancer antibodies is limited by the resistance of tumor cells to complement-mediated attack, primarily through the over-expression of membrane complement regulatory proteins (mCRPs: CD46, CD55 and CD59). Trastuzumab, an anti- HER2 monoclonal antibody, approved for the treatment of HER2-positive breast and gastric cancers, exerts only minor complement-mediated cytotoxicity (CDC). Pertuzumab is a novel anti-HER2 monoclonal antibody, which blocks HER2 dimerization with other ligand-activated HER family members.
View Article and Find Full Text PDFErbB2 is an important oncogenic protein involved in carcinogenesis of, among others, breast, gastric, and ovarian carcinoma. Over-expression of ErbB2 is found in almost 20% of breast cancers, and this results in proliferative and anti-apoptotic signalling. ErbB2 is therefore an important treatment target.
View Article and Find Full Text PDFPurpose: The aim of this study was to investigate the antitumor effects of HER2-directed combination therapy in ovarian cancer xenograft models to evaluate their potential. The combinations of trastuzumab and pertuzumab, and trastuzumab and aromatase inhibitor therapy were investigated.
Experimental Design: The effects of trastuzumab, pertuzumab, and letrozole on growth response, apoptosis, morphology, and gene and protein expression were evaluated in the SKOV3 ovarian cancer cell line xenograft and a panel of five human ovarian xenografts derived directly from clinical specimens.
The human epidermal growth factor receptor (HER) family plays an important role in cell survival and proliferation, and is implicated in oncogenesis. Overexpression of HER2 is associated with aggressive disease and poor prognosis. Trastuzumab is a humanized monoclonal antibody targeting HER2 and has proven survival benefit for women with HER2-positive early and metastatic breast cancer.
View Article and Find Full Text PDFThis study was designed to evaluate the expression of HER receptors as a marker of sensitivity to the humanized anti-HER2 monoclonal antibody pertuzumab in ovarian cancer cells. In a recent clinical trial, low levels of HER3 mRNA have been shown to associate with pertuzumab response when combined with gemcitabine. We sought to define how pertuzumab modulated HER expression levels in ovarian cancer using cell line models to better understand differential and dynamic receptor expression in therapeutic response.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) and ErbB2 readily form heterodimers when both are expressed in the same cell and the EGFR is activated by one of its ligands. Our data show that such heterodimers are constitutively formed also in a ligand-independent manner on overexpression of EGFR and ErbB2 in porcine aortic endothelial cells. Interestingly, cross-linking experiments showed that incubation with the antibody pertuzumab, which has been shown to bind the dimerization arm of ErbB2, resulted in dissolution of EGFR-ErbB2 heterodimers.
View Article and Find Full Text PDFLateral interaction of c-erbB family receptors resulting in dimer formation is the key event initiating signal transduction. Consequently cross-activation and intracellular signaling is triggered with immediate impact on cell proliferation, migration, cell survival, and differentiation. In order to elucidate the connection of signal input (receptor activation) and signal output (altered cellular behavior) we dynamically assessed cell proliferation of BT474 and SK-BR-3 breast cancer cell lines.
View Article and Find Full Text PDFPertuzumab (Omnitarg, rhuMab 2C4) is a humanized monoclonal antibody, which inhibits HER2 dimerization. Because it has shown some clinical activity in ovarian cancer, this study sought to identify predictors of response to this agent in a model of ovarian cancer. A panel of 13 ovarian cancer cell lines was treated with heregulin beta1 (HRGbeta1) or transforming growth factor-alpha, and cell proliferation was assessed.
View Article and Find Full Text PDFIn many solid tumors, overexpression of human epidermal growth factor receptors (e.g., HER1/EGFR and HER2) correlates with poor prognosis.
View Article and Find Full Text PDFPurpose: Attempts to selectively initiate tumor cell death through inducible apoptotic pathways are increasingly being exploited as a potential anticancer strategy. Inhibition of NAD+ synthesis by a novel agent FK866 has been recently reported to induce apoptosis in human leukemia, hepatocarcinoma cells in vitro, and various types of tumor xenografts in vivo. In the present study, we used 1H-decoupled phosphorus (31P) magnetic resonance spectroscopy (MRS) to examine the metabolic changes associated with FK866 induced tumor cell death in a mouse mammary carcinoma.
View Article and Find Full Text PDFDeregulation of apoptosis, the physiological form of cell death, is closely associated with immunological diseases and cancer. Apoptosis is activated either by death receptor-driven or mitochondrial pathways, both of which may provide potential targets for novel anticancer drugs. Although several ligands stimulating death receptors have been described, the actual molecular events triggering the mitochondrial pathway are largely unknown.
View Article and Find Full Text PDFWe recently developed a class of novel antitumor agents that elicit a potent growth-inhibitory response in many tumor cells cultured in vitro. WK175, a member of this class, was chosen as a model compound that showed strong in vitro efficacy. WK175 interferes with the intracellular steady-state level of NAD(+), resulting in a decreased cellular NAD(+) concentration.
View Article and Find Full Text PDFDisruption of mitochondrial electron transport and opening of the so-called mitochondrial permeability transition pores (PTPs) are early events in apoptotic cell death and may be caused by the uncoupler of mitochondrial oxidation and phosphorylation, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). We investigated the cellular toxicity of FCCP in HL60 and CCRF-CEM cells alone or in combination with the known apoptosis inducers such as inhibitor of serine/threonine protein kinases staurosporine (Sts) and protein kinase C inhibitor chelerythrine. FCCP induced apoptotic cell death in both cell lines in a dose-dependent manner, and we were able to demonstrate an appearance of caspase-3-dependent PARP cleavage fragments with Western blot and the appearance of large (15-50 kb) DNA fragments using pulsed-field gel electrophoresis.
View Article and Find Full Text PDF