Background: Bone functional adaptation rationalises the inhomogeneous morphology found in bone. By means of computed tomography osteoabsorptiometry and micro-computed tomography, the mineralisation of the subchondral endplates and trabecular microstructure of vertebral bodies can be assessed to visualise the chronic loading conditions bone endures over time. In this study, we determined cancellous and compartment-specific trabecular architecture in the cervical vertebra to aid with successful integration of orthopaedic implants.
View Article and Find Full Text PDFThe sacroiliac auricular surface has a variable morphology and size. The impact of such variations on subchondral mineralization distribution has not been investigated. Sixty-nine datasets were subjected to CT-osteoabsorptiometry for the qualitative visualization of chronic loading conditions of the subchondral bone plate using color-mapped densitograms based on Hounsfield Units in CT.
View Article and Find Full Text PDFAn model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities.
View Article and Find Full Text PDF