Publications by authors named "Max Grell"

Article Synopsis
  • * Researchers developed a machine learning model that uses point-of-use measurements of ammonia (NH), soil conductivity, pH, and weather data to predict soil nitrate (NO) levels with a correlation of R = 0.70.
  • * The long short-term memory (LSTM) neural network can forecast NH and NO levels up to 12 days ahead from a single measurement, providing a tool for better fertilization planning that can reduce overfertilization and enhance crop yields.
View Article and Find Full Text PDF

Rapid screening and low-cost diagnosis play a crucial role in choosing the correct course of intervention when dealing with highly infectious pathogens. This is especially important if the disease-causing agent has no effective treatment, such as the novel coronavirus SARS-CoV-2, and shows no or similar symptoms to other common infections. Here, we report a disposable silicon-based integrated Point-of-Need transducer (TriSilix) for real-time quantitative detection of pathogen-specific sequences of nucleic acids.

View Article and Find Full Text PDF

We report a method of creating solderable, mechanically robust, electrical contacts to interface (soft) silicone-based strain sensors with conventional (hard) solid-state electronics using a nanoporous Si-Cu composite. The Si-based solder-on electrical contact consists of a copper-plated nanoporous Si top surface formed through metal-assisted chemical etching and electroplating and a smooth Si bottom surface that can be covalently bonded onto silicone-based strain sensors through plasma bonding. We investigated the mechanical and electrical properties of the contacts proposed under relevant ranges of mechanical stress for applications in physiological monitoring and rehabilitation.

View Article and Find Full Text PDF

We report an entirely new class of printed electrical gas sensors that are produced at near "zero cost". This technology exploits the intrinsic hygroscopic properties of cellulose fibers within paper; although it feels and looks dry, paper contains substantial amount of moisture, adsorbed from the environment, enabling the use of wet chemical methods for sensing without manually adding water to the substrate. The sensors exhibit high sensitivity to water-soluble gases (e.

View Article and Find Full Text PDF

Commercially available metal inks are mainly designed for planar substrates (for example, polyethylene terephthalate foils or ceramics), and they contain hydrophobic polymer binders that fill the pores in fabrics when printed, thus resulting in hydrophobic electrodes. Here, a low-cost binder-free method for the metallization of woven and nonwoven fabrics is presented that preserves the 3D structure and hydrophilicity of the substrate. Metals such as Au, Ag, and Pt are grown autocatalytically, using metal salts, inside the fibrous network of fabrics at room temperature in a two-step process, with a water-based silicon particle ink acting as precursor.

View Article and Find Full Text PDF