Background: Electrophysiological recordings of isolated sensory afferents are commonly used in the field of pain research to investigate peripheral mechanisms of nociception in various pain models. The method involves skillful and tedious recordings of teased fibers from nerve preparations as well as time-consuming post-recording analyses. To increase efficiency and productivity of data analyses of recorded action potentials, we developed and validated a novel, easy-to-use Microsoft Excel-based application using Visual Basic Programming.
View Article and Find Full Text PDFOral cancer pain is debilitating and understanding mechanisms for it is critical to develop novel treatment strategies treatment strategies. Brain-derived neurotrophic factor (BDNF) signaling is elevated in oral tumor biopsies and is involved with tumor progression. Whether BDNF signaling in oral tumors contributes to cancer-induced pain is not known.
View Article and Find Full Text PDFConsiderable gap in knowledge exists about the mechanisms by which oral tumors regulate peripheral sensory fibers to produce pain and altered sensations. To address this gap, we used a murine model of oral squamous cell carcinoma (OSCC) of the tongue to investigate changes in response properties of trigeminal afferent neurons. Using this model, we developed an ex vivo method for single neuron recordings of the lingual nerve from isolated tongue tissue.
View Article and Find Full Text PDFThe tongue is uniquely exposed to water-soluble environmental chemicals that may lead to injury or tumorigenesis. However, comparatively little research has focused on the molecular and functional organization of trigeminal ganglia (TG) afferent neurons innervating the tongue. The current study identified and characterized lingual sensory neurons based on a neuronal subtype classification previously characterized in the dorsal root ganglion (DRG) neurons.
View Article and Find Full Text PDF