Multispanning membrane proteins are inserted into the endoplasmic reticulum membrane by the ribosome-bound multipass translocon (MPT) machinery. Based on cryo-electron tomography and extensive subtomogram analysis, we reveal the composition and arrangement of ribosome-bound MPT components in their native membrane environment. The intramembrane chaperone complex PAT and the translocon-associated protein (TRAP) complex associate substoichiometrically with the MPT in a translation-dependent manner.
View Article and Find Full Text PDFThe dynamic ribosome-translocon complex, which resides at the endoplasmic reticulum (ER) membrane, produces a major fraction of the human proteome. It governs the synthesis, translocation, membrane insertion, N-glycosylation, folding and disulfide-bond formation of nascent proteins. Although individual components of this machinery have been studied at high resolution in isolation, insights into their interplay in the native membrane remain limited.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) translocon complex is the main gate into the secretory pathway, facilitating the translocation of nascent peptides into the ER lumen or their integration into the lipid membrane. Protein biogenesis in the ER involves additional processes, many of them occurring co-translationally while the nascent protein resides at the translocon complex, including recruitment of ER-targeted ribosome-nascent-chain complexes, glycosylation, signal peptide cleavage, membrane protein topogenesis and folding. To perform such varied functions on a broad range of substrates, the ER translocon complex has different accessory components that associate with it either stably or transiently.
View Article and Find Full Text PDF