Background: Peripheral nerve stimulation with implanted nerve cuff electrodes can restore standing, stepping and other functions to individuals with spinal cord injury (SCI). We performed the first study to evaluate the clinical electrodiagnostic changes due to electrode implantation acutely, chronic presence on the nerve peri- and post-operatively, and long-term delivery of electrical stimulation.
Methods: A man with bilateral lower extremity paralysis secondary to cervical SCI sustained 5 years prior to enrollment received an implanted standing neuroprosthesis including composite flat interface nerve electrodes (C-FINEs) electrodes implanted around the proximal femoral nerves near the inguinal ligaments.
J Neuroeng Rehabil
April 2020
Neuroprostheses that activate musculature of the lower extremities can enable standing and movement after paralysis. Current systems are functionally limited by rapid muscle fatigue induced by conventional, non-varying stimulus waveforms. Previous work has shown that sum of phase-shifted sinusoids (SOPS) stimulation, which selectively modulates activation of individual motor unit pools (MUPs) to lower the duty cycle of each while maintaining a high net muscle output, improves joint moment maintenance but introduces greater instability over conventional stimulation.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
December 2019
Peripheral nerve cuff electrodes (NCEs) in motor system neuroprostheses can generate strong muscle contractions and enhance surgical efficiency by accessing multiple muscles from a single proximal location. Predicting chronic performance of high contact density NCEs based on intraoperative observations would facilitate implantation at locations that maximize selective recruitment, immediate connection of optimal contacts to implanted pulse generators (IPGs) with limited output channels, and initiation of postoperative rehabilitation as soon as possible after surgery. However, the stability of NCE intraoperative recruitment to predict chronic performance has not been documented.
View Article and Find Full Text PDFBackground: Electrical stimulation of the peripheral nerves has been shown to be effective in restoring sensory and motor functions in the lower and upper extremities. This neural stimulation can be applied via non-penetrating spiral nerve cuff electrodes, though minimal information has been published regarding their long-term performance for multiple years after implantation.
Methods: Since 2005, 14 human volunteers with cervical or thoracic spinal cord injuries, or upper limb amputation, were chronically implanted with a total of 50 spiral nerve cuff electrodes on 10 different nerves (mean time post-implant 6.
Annu Int Conf IEEE Eng Med Biol Soc
August 2012
This paper describes a method to efficiently sample EMG recruitment space over a wide range of pulse amplitude (PA) and pulse width (PW). A gradient based search method is developed to find high information areas of a recruitment surface. This search method is first examined in the context of simulated EMG recruitment data and its ability to sample and subsequently fit Gompertz-Function-inspired surfaces to it.
View Article and Find Full Text PDF