Publications by authors named "Max E Winston"

The evolution of mass raiding has allowed army ants to become dominant arthropod predators in the tropics. Although a century of research has led to many discoveries about behavioural, morphological and physiological adaptations in army ants, almost nothing is known about the molecular basis of army ant biology. Here we report the genome of the iconic New World army ant Eciton burchellii, and show that it is unusually compact, with a reduced gene complement relative to other ants.

View Article and Find Full Text PDF

Heritable variation is essential for evolution by natural selection. In Neotropical army ants, the ecological role of a given species is linked intimately to the morphological variation within the sterile worker caste. Furthermore, the army ant is highly polyandrous, presenting a unique opportunity to explore heritability of morphological traits among related workers sharing the same colonial environment.

View Article and Find Full Text PDF

The emergence of the Isthmus of Panama is one of the most important events in recent geological history, yet its timing and role in fundamental evolutionary processes remain controversial. While the formation of the isthmus was complete around 3 million years ago (Ma), recent studies have suggested prior intercontinental biotic exchange. In particular, the possibility of early intermittent land bridges facilitating colonization constitutes a potential mechanism for speciation and colonization before full closure of the isthmus.

View Article and Find Full Text PDF

Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars.

View Article and Find Full Text PDF