The Canadian Consortium on Neurodegeneration in Aging (CCNA) was created by the Canadian federal government through its health research funding agency, the Canadian Institutes for Health Research (CIHR), in 2014, as a response to the G7 initiative to fight dementia. Two five-year funding cycles (2014-2019; 2019-2024) have occurred following peer review, and a third cycle (Phase 3) has just begun. A unique construct was mandated, consisting of 20 national teams in Phase I and 19 teams in Phase II (with research topics spanning from basic to clinical science to health resource systems) along with cross-cutting programs to support them.
View Article and Find Full Text PDFBackground: Prenatal alcohol exposure is the leading preventable cause of behavioral and cognitive deficits, which may affect between 2 and 5 % of children in North America. While the underlying mechanisms of alcohol's effects on development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the range of symptoms observed in children with fetal alcohol spectrum disorder (FASD). Thus, we investigated the effects of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort of human FASD samples to date.
View Article and Find Full Text PDFBackground: Significant protease activations have been reported after traumatic brain injury (TBI). These proteases are responsible for cleavage of transmembrane proteins in neurons, glial, and endothelial cells and this results in the release of their extracellular domains (ectodomains).
Methods: Two TBI models were employed here, representing both closed head injury (CHI) and open head injury (OHI).
TDP-43 (TAR DNA binding protein 43) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been found to play an important role in neurodegenerative diseases. TDP-43's involvement in nuclear factor-kappaB pathways has been reported in both neurons and microglial cells. The NF-κB pathway targets hundreds of genes, many of which are involved in inflammation, immunity and cancer.
View Article and Find Full Text PDFSynaptic competition is widely believed to be central to the formation and function of neuronal networks, yet the underlying mechanisms are poorly described. To investigate synaptic competition in vitro, we have developed a novel two input pathway competition model using a 3-compartment microfluidic device. Axons from cultured rat cortical neurons from two different lateral compartments (inputs) innervate a common neuronal population in a separate central compartment.
View Article and Find Full Text PDFBackground: The presence of an extra whole or part of chromosome 21 in people with Down syndrome (DS) is associated with multiple neurological changes, including pathological aging that often meets the criteria for Alzheimer's Disease (AD). In addition, trisomies have been shown to disrupt normal epigenetic marks across the genome, perhaps in response to changes in gene dosage. We hypothesized that trisomy 21 would result in global epigenetic changes across all participants, and that DS patients with cognitive impairment would show an additional epigenetic signature.
View Article and Find Full Text PDFBackground: TAR DNA-binding protein 43 (TDP-43) is a protein that is involved in the pathology of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). In patients with these neurodegenerative diseases, TDP-43 does not remain in its normal nuclear location, but instead forms insoluble aggregates in both the nucleus and cytoplasm of affected neurons.
Results: We used high density peptide array analysis to identify regions in TDP-43 that are bound by TDP-43 itself and designed candidate peptides that might be able to reduce TDP-43 aggregation.
Progranulin (PGRN) haploinsufficiency accounts for up to 10% of frontotemporal lobe dementia. PGRN has also been implicated in neuroinflammation in acute and chronic neurological disorders. Here we report that both protein and mRNA levels of cortical and hippocampal PGRN are significantly enhanced following pilocarpine-induced status epilepticus.
View Article and Find Full Text PDFSecretory trafficking through the Golgi complex is critical for neuronal development, function, and stress response. Altered secretion is associated with the pathogenesis of various neurological diseases. We found that c-Jun amino-terminal kinase 3 (JNK3) inhibited secretory trafficking by promoting the depletion of phosphatidylinositol 4-phosphate (PI4P) in the Golgi complex of COS7 cells and primary rat neurons.
View Article and Find Full Text PDFNeurobiol Aging
November 2013
Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress.
View Article and Find Full Text PDFWe recently reported evidence for disturbed synaptic versus extrasynaptic NMDAR transmission in the early pathogenesis of Huntington's disease (HD), a late-onset neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin. Studies in glutamatergic cells indicate that synaptic NMDAR transmission increases phosphorylated cyclic-AMP response element binding protein (pCREB) levels and drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation reduces pCREB and promotes cell death. By generating striatal and cortical neuronal co-cultures to investigate the glutamatergic innervation of striatal neurons, we demonstrate that dichotomous synaptic and extrasynaptic NMDAR signaling also occurs in GABAergic striatal medium-sized spiny neurons (MSNs), which are acutely vulnerable in HD.
View Article and Find Full Text PDFThe NMDAR plays a unique and vital role in subcellular signaling. Calcium influx initiates signaling cascades important for both synaptic plasticity and survival; however, overactivation of the receptor leads to toxicity and cell death. This dichotomy is partially explained by the subcellular location of the receptor.
View Article and Find Full Text PDFThe study of experience-dependent ocular dominance (OD) plasticity has greatly contributed to the understanding of visual development. During the critical period, preventing input from one eye results in a significant impairment of vision, and loss of cortical responsivity via the deprived eye. Residual ocular dominance plasticity has recently been observed in adulthood.
View Article and Find Full Text PDFAlthough the palmitoyl acyltransferase (PAT) zinc-finger DHHC containing 17 (zD17) has been implicated in genetic neurological disorders by regulating protein palmitoylation, the role of zD17 in acute brain injury remains unknown. Here, we report that zD17 contributes to acute ischemic brain injury via a mechanism independent of its PAT activity. We have found that zD17 directly interacts with c-Jun N terminus kinase (JNK) to form a signaling module for JNK activation.
View Article and Find Full Text PDFFrontotemporal dementia (FTD) has been linked to mutations in the progranulin gene (GRN) that lead to progranulin (PGRN) haploinsufficiency. Thus far, our understanding of the effects of PGRN depletion in the brain has been derived from investigation of gross pathology, and more detailed analyses of cellular function have been lacking. We report that knocking down PGRN levels in rat primary hippocampal cultures reduces neural connectivity by decreasing neuronal arborization and length as well as synapse density.
View Article and Find Full Text PDFNull mutations in the progranulin gene (PGRN) have been identified as a major cause of frontotemporal dementia with ubiquitinated inclusions. In this disorder, ubiquitinated, aggregated protein inclusions of a normally nuclear-located RNA processing protein called TAR DNA binding protein (TDP-43) accumulate in the neuronal cytoplasm (FTLD-TDP). To determine whether aspects of this clinical pathology can be established in primary cultures of mouse cortical neurons, PGRN levels were knocked down in neuronal cultures using lentiviral vectors to introduce mouse PGRN-siRNA constructs and subsequently rescued by overexpressing PGRN using a human PGRN-expressing lentiviral vector.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2010
Purpose: To investigate the morphologic and molecular consequences of 30- and 90-minute central retinal artery ligation (CRAL)-induced retinal ischemia, followed by 3 and 12 hours of reperfusion, and to identify potential targets for therapy.
Methods: Retinal ischemia was induced for 30 and 90 minutes by ligating the rat central retinal artery, and corresponding effects were examined histologically, immunocytochemically, and molecularly at 3 hours and 12 hours of reperfusion. Patterns of gene expression revealed significantly upregulated and downregulated genes by gene array analyses and were verified by quantitative RT-PCR.
Excitotoxic neuronal damage caused by overactivation of N-methyl-D-aspartate glutamate receptors (NMDARs) is thought to be a principal cause of neuronal loss after stroke and brain trauma. Here we report that activation of sterol regulatory element binding protein-1 (SREBP-1) transcription factor in affected neurons is an essential step in NMDAR-mediated excitotoxic neuronal death in both in vitro and in vivo models of stroke. The NMDAR-mediated activation of SREBP-1 is a result of increased insulin-induced gene-1 (Insig-1) degradation, which can be inhibited with an Insig-1-derived interference peptide (Indip) that we have developed.
View Article and Find Full Text PDFThe AMPA receptor (AMPAR) subunits GluR1 and GluR2 show different properties in central neurons and affect AMPAR trafficking via distinct mechanisms. This subunit-specificity is partly achieved by recruiting unique protein modifications on different subunits. Here, we show that palmitoylation of GluR1 and GluR2 subunits also displays subunit-specific properties and functions.
View Article and Find Full Text PDFWe report the first demonstration that Krüpple-like factor 4 (KLF4) mRNA is dramatically and rapidly upregulated by NMDA application in primary cortical neuron cultures. We also report that NMDA induced significant and transient upregulation of KLF4 protein expression, in both cortical neuron cultures and native brain slices. The increase of KLF4 mRNA and protein expression in response to NMDA was time-dependent, and required NMDA receptor-mediated Ca(2+) influx.
View Article and Find Full Text PDFBilirubin, an abundant bile pigment in mammalian serum, was once considered a toxic waste product and has more recently been recognized as a potent antioxidant of physiological importance. However, its potential biological functions in other fields are not well understood. Herein we show that bilirubin is also a powerful immunomodulatory agent.
View Article and Find Full Text PDFAnisomycin is both a well-established protein synthesis inhibitor and a potent activator of the p38/JNK MAPK pathway. It has been used to block the late phase of long-term potentiation (LTP) and long-term depression (LTD) in hippocampus. In this study, we have found that anisomycin produces a time-dependent decline in the magnitude of the field EPSP (fEPSP) in acute brain slices of mouse primary visual cortex.
View Article and Find Full Text PDFOxidative stress plays an important role in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Bilirubin is regarded today as a potent antioxidant. Recent studies show that the potent antioxidant actions of bilirubin reflect an amplification mechanism whereby biliverdin reductase (BVR) physiologically regenerates bilirubin in a catalytic cycle.
View Article and Find Full Text PDFZinc is packaged in, and released from, a subset of glutamatergic synapses in the mammalian telencephalon where it has been shown to act as a potent neuromodulator. In order to establish the functional role for zincergic neurons in visual cortical function and plasticity we have compared the topographic distribution of zincergic terminals in the primary visual cortex (V1) of normal adult vervet monkeys (Cercopithicus aethiops) to that in monkeys monocularly deprived of visual input for short (24 h) or long (3 months) survival times. In normal animals, staining levels for zinc were highest in layers 1-3, 4b, 5 and 6 and lowest in layers 4a and 4c.
View Article and Find Full Text PDF