Publications by authors named "Max Backman"

Context.—: The immune microenvironment is involved in fundamental aspects of tumorigenesis, and immune scores are now being developed for clinical diagnostics.

Objective.

View Article and Find Full Text PDF

The antigenic repertoire of tumors is critical for successful anti-cancer immune response and the efficacy of immunotherapy. Cancer-testis antigens (CTAs) are targets of humoral and cellular immune reactions. We aimed to characterize CTA expression in non-small cell lung cancer (NSCLC) in the context of the immune microenvironment.

View Article and Find Full Text PDF

Introduction: Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).

Methods: We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs).

View Article and Find Full Text PDF
Article Synopsis
  • Cancer immunity relies on the interactions among various immune cells within tumor tissue, and identifying immune signatures can help predict disease progression more accurately.
  • A study analyzed 1481 tumor samples to develop an immune activation signature (SIA) by assessing CD8 and macrophages, showing its prognostic value across several cancer types and its applicability in predicting patient survival.
  • The SIA, represented as a CD8A to C1QA mRNA ratio, proved to be a reliable marker for response to immunotherapy, illustrating its potential as a clinical tool in managing cancers like colorectal and lung adenocarcinomas.
View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts (CAFs) are molecularly heterogeneous mesenchymal cells that interact with malignant cells and immune cells and confer anti- and protumorigenic functions. Prior in situ profiling studies of human CAFs have largely relied on scoring single markers, thus presenting a limited view of their molecular complexity. Our objective was to study the complex spatial tumor microenvironment of non-small cell lung cancer (NSCLC) with multiple CAF biomarkers, identify novel CAF subsets, and explore their associations with patient outcome.

View Article and Find Full Text PDF

While the clinical importance of CD8+ and CD3+ cells in colorectal cancer (CRC) is well established, the impact of other immune cell subsets is less well described. We sought to provide a detailed overview of the immune landscape of CRC in the largest study to date in terms of patient numbers and in situ analyzed immune cell types. Tissue microarrays from 536 patients were stained using multiplexed immunofluorescence panels, and fifteen immune cell subclasses, representing adaptive and innate immunity, were analyzed.

View Article and Find Full Text PDF

Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic put the entire healthcare sector under severe strain due to shortages of personal protection equipment. A large number of new filtering mask models were introduced on the market, claiming effectiveness that had undergone little or no objective and reliable verifications. Filter materials were tested against sodium chloride particles according to the EN149 §7.

View Article and Find Full Text PDF

Amplification of fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) has been considered as an actionable drug target. However, pan-FGFR tyrosine kinase inhibitors did not demonstrate convincing clinical efficacy in FGFR1-amplified NSCLC patients. This study aimed to characterise the molecular context of FGFR1 expression and to define biomarkers predictive of FGFR1 inhibitor response.

View Article and Find Full Text PDF

Background: The development of a reactive tumour stroma is a hallmark of tumour progression and pronounced tumour stroma is generally considered to be associated with clinical aggressiveness. The variability between tumour types regarding stroma fraction, and its prognosis associations, have not been systematically analysed.

Methods: Using an objective machine-learning method we quantified the tumour stroma in 16 solid cancer types from 2732 patients, representing retrospective tissue collections of surgically resected primary tumours.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on fibroblast markers (FAP, PDGFβR, and α-SMA) in non-small-cell lung cancer (NSCLC) to explore their relationship with immune cell presence, genetic mutations, and patient survival.
  • High levels of FAP expression were found to correlate with poorer survival outcomes, particularly in patients with adenocarcinoma and low CD8 immune cell infiltration.
  • The research highlights the potential of FAP as a standalone prognostic marker for NSCLC and calls for further investigations into how genetic mutations interact with the tumor's fibroblast makeup and immune responses.
View Article and Find Full Text PDF

Gene amplification is considered to be one responsible cause for upregulation of Programmed Death Ligand-1 (PD-L1) in non-small cell lung cancer (NSCLC) and to represent a specific molecular subgroup possibly associated with immunotherapy response. Our aim was to analyze the frequency of PD-L1 amplification, its relation to PD-L1 mRNA and protein expression, and to characterize the immune microenvironment of amplified cases. The study was based on two independent NSCLC cohorts, including 354 and 349 cases, respectively.

View Article and Find Full Text PDF

Purpose: The small molecule inhibitors larotrectinib and entrectinib have recently been approved as cancer agnostic drugs in patients with tumours harbouring a rearrangement of the neurotrophic tropomyosin receptor kinase (NTRK). These oncogenic fusions are estimated to occur in 0.1-3 % of non-small cell lung cancers (NSCLC).

View Article and Find Full Text PDF

Immunohistochemistry (IHC) is the accepted standard for spatial analysis of protein expression in tissues. IHC is widely used for cancer diagnostics and in basic research. The development of new antibodies to proteins with unknown expression patterns has created a demand for thorough validation.

View Article and Find Full Text PDF
Article Synopsis
  • ASCL1, a master regulator of neuroendocrine differentiation, is identified as a marker for a specific type of lung adenocarcinoma, but its role in tumor development and interaction with the immune system remains largely unexplored.
  • Research showed that ASCL1-positive lung adenocarcinomas have fewer immune cells like CD8, CD4, and various macrophages, creating an “immune desert” environment that may hinder anti-tumor immune responses.
  • Additionally, ASCL1 promotes tumor growth and alters the secretion of chemokines, affecting the movement of immune cells and contributing to its tumor-promoting effects, suggesting ASCL1-positive tumors are an important type of lung cancer to study further.
View Article and Find Full Text PDF

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

Background: The immunohistochemical analysis of programmed cell death ligand 1 (PD-L1) expression in tumor tissue of non-small-cell lung cancer patients has now been integrated in the diagnostic workup. Analysis is commonly done on small tissue biopsy samples representing a minimal fraction of the whole tumor. The aim of the study was to evaluate the correlation of PD-L1 expression on biopsy specimens with corresponding resection specimens.

View Article and Find Full Text PDF

Semiquantitative assessment of immune markers by immunohistochemistry (IHC) has significant limitations for describing the diversity of the immune response in cancer. Therefore, we evaluated a fluorescence-based multiplexed immunohistochemical method in combination with a multispectral imaging system to quantify immune infiltrates in situ in the environment of non-small-cell lung cancer (NSCLC). A tissue microarray including 57 NSCLC cases was stained with antibodies against CD8, CD20, CD4, FOXP3, CD45RO, and pan-cytokeratin, and immune cells were quantified in epithelial and stromal compartments.

View Article and Find Full Text PDF

Assessment of programmed cell death ligand 1 (PD-L1) immunohistochemical staining is used for decision on treatment with programmed cell death 1 and PD-L1 checkpoint inhibitors in lung adenocarcinomas and squamous cell carcinomas. This study aimed to compare the staining properties of tumor cells between the antibody clones 28-8, 22C3, SP142, and SP263 and investigate interrater variation between pathologists to see if these stainings can be safely evaluated in the clinical setting. Using consecutive sections from a tissue microarray with tumor tissue from 55 resected lung cancer cases, staining with five PD-L1 assays (28-8 from two different vendors, 22C3, SP142, and SP263) was performed.

View Article and Find Full Text PDF