17β-estradiol (E2) is an important natural female hormone that is also classified as an estrogenic endocrine-disrupting compound (e-EDC). It is, however, known to cause more damaging health effects compared to other e-EDCs. Environmental water systems are commonly contaminated with E2 that originates from domestic effluents.
View Article and Find Full Text PDFPurification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility.
View Article and Find Full Text PDFThe binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements.
View Article and Find Full Text PDFAntibodies have been the workhorse for diagnostic immunohistochemistry to specifically interrogate the expression of certain protein to aid in histopathological diagnosis. This review introduces another dimension of histochemistry that employs aptamers as the core tool, the so-called aptahistochemistry. Aptamers are an emerging class of molecular recognition elements that could recapitulate the roles of antibodies.
View Article and Find Full Text PDFA sensitive and reagentless electrochemical aptatoxisensor was developed on cobalt (II) salicylaldiimine metallodendrimer (SDD-Co(II)) doped with electro-synthesized silver nanoparticles (AgNPs) for microcystin-LR (L, l-leucine; R, l-arginine), or MC-LR, detection in the nanomolar range. The GCE|SDD-Co(II)|AgNPs aptatoxisensor was fabricated with 5' thiolated aptamer through self-assembly on the modified surface of the glassy carbon electrode (GCE) and the electronic response was measured using cyclic voltammetry (CV). Specific binding of MC-LR with the aptamer on GCE|SDD-Co(II)|AgNPs aptatoxisensor caused the formation of a complex that resulted in steric hindrance and electrostatic repulsion culminating in variation of the corresponding peak current of the electrochemical probe.
View Article and Find Full Text PDFAn impedimetric immunosensor for fumonisin B₁ (FB₁) was developed from a poly(2,5-dimethoxyaniline)-multi-walled carbon nanotube (PDMA-MWCNT) composite on the surface of glassy carbon electrode (GCE). The composite was prepared electrochemically and characterized using cyclic voltammetry. The preparation of the FB₁ immunosensor involved the drop-coating of a bovine serum albumin mixture of the anti-fumonisin antibody (anti-Fms) onto the composite polymer-modified GCE.
View Article and Find Full Text PDF