Publications by authors named "Mawaheb Al-Dossari"

Researchers in science and industry are increasingly interested in conductive textiles. In this article, we have successfully prepared conductive textiles by applying a graphite dispersion to cotton fabric using a simple brush-coating-drying method and the solvents of dimethyl sulfoxide, dimethyl formamide, and a solvent mixture of both. The sheet resistance of the resulting cotton fabrics could be influenced by the type of polar solvent used to prepare the graphite dispersion and the concentration of graphite.

View Article and Find Full Text PDF

In this work, a low-cost, high-yield hydrothermal treatment was used to produce nanozeolite (Zeo), nanoserpentine (Serp), and Zeo/Serp nanocomposites with weight ratios of 1:1 and 2:1. At 250 °C for six hours, the hydrothermal treatment was conducted. Various methods are used to explore the morphologies, structures, compositions, and optical characteristics of the generated nanostructures.

View Article and Find Full Text PDF

Rock wool (RW) nanostructures of various sizes and morphologies were prepared using a combination of ball-mill and hydrothermal techniques, followed by an annealing process. Different tools were used to explore the morphologies, structures, chemical compositions and optical characteristics of the samples. The effect of initial particle size on the characteristics and photoelectrochemical performance of RW samples generated hydrothermally was investigated.

View Article and Find Full Text PDF

Vanadium oxide (VO) is considered a Peierls-Mott insulator with a metal-insulator transition (MIT) at T = 68° C. The tuning of MIT parameters is a crucial point to use VO within thermoelectric, electrochromic, or thermochromic applications. In this study, the effect of oxygen deficiencies, strain engineering, and metal tungsten doping are combined to tune the MIT with a low phase transition of 20 °C in the air without capsulation.

View Article and Find Full Text PDF

Nanotechnology is a fast-expanding area with a wide range of applications in science, engineering, health, pharmacy, and other fields. Nanoparticles (NPs) are frequently prepared via a variety of physical and chemical processes. Simpler, sustainable, and cost-effective green synthesis technologies have recently been developed.

View Article and Find Full Text PDF