Background And Objective: Pain influences motor control. Previous reviews observed that pain reduces the excitability of corticospinal projections to muscles tested with transcranial magnetic stimulation. However, the independent effect of the type of pain models (tonic, phasic), pain location and tissues targeted (e.
View Article and Find Full Text PDFKey Points: Experimental pain or its anticipation influence motor preparation processes as well as upcoming movement execution, but the underlying physiological mechanisms remain unknown. Our results showed that movement-related pain modulates corticospinal excitability during motor preparation. In accordance with the pain adaptation theory, corticospinal excitability was higher when the muscle has an antagonist (vs.
View Article and Find Full Text PDFPain influences plasticity within the sensorimotor system and the aim of this study was to assess the effect of pain on changes in motor performance and corticospinal excitability during training for a novel motor task. A total of 30 subjects were allocated to one of two groups (Pain, NoPain) and performed ten training blocks of a visually-guided isometric pinch task. Each block consisted of 15 force sequences, and subjects modulated the force applied to a transducer in order to reach one of five target forces.
View Article and Find Full Text PDFSensorimotor reorganization is believed to play an important role in the development and maintenance of phantom limb pain, but pain itself might modulate sensorimotor plasticity induced by deafferentation. Clinical and basic research support this idea, as pain prior to amputation increases the risk of developing post-amputation pain. The aim of this study was to examine the influence of experimental tonic cutaneous hand pain on the plasticity induced by temporary ischemic hand deafferentation.
View Article and Find Full Text PDF