Current approaches for electric power generation from nanoscale conducting or semiconducting layers in contact with moving aqueous droplets are promising as they show efficiencies of around 30%, yet even the most successful ones pose challenges regarding fabrication and scaling. Here, we report stable, all-inorganic single-element structures synthesized in a single step that generate electrical current when alternating salinity gradients flow along its surface in a liquid flow cell. Nanolayers of iron, vanadium, or nickel, 10 to 30 nm thin, produce open-circuit potentials of several tens of millivolt and current densities of several microA cm at aqueous flow velocities of just a few cm s The principle of operation is strongly sensitive to charge-carrier motion in the thermal oxide nanooverlayer that forms spontaneously in air and then self-terminates.
View Article and Find Full Text PDFIon specific outcomes at aqueous interfaces remain among the most enigmatic phenomena in interfacial chemistry. Here, charged fused silica/water interfaces have been probed by homodyne- and heterodyne-detected (HD) second harmonic generation (SHG) spectroscopy at pH 7 and 5.8 and for concentrations of LiCl, NaCl, NaBr, NaI, KCl, RbCl, and CsCl ranging from tens of micromolar to several hundred millimolar.
View Article and Find Full Text PDFWe report ionic strength-dependent phase shifts in second harmonic generation (SHG) signals from charged interfaces that verify a recent model in which dispersion between the fundamental and second harmonic beams modulates observed signal intensities. We show how phase information can be used to unambiguously separate the χ and interfacial potential-dependent χ terms that contribute to the total signal and provide a path to test primitive ion models and mean field theories for the electrical double layer with experiments to which theory must conform. Finally, we demonstrate the new method on supported lipid bilayers and comment on the ability of our new instrument to identify hyper-Rayleigh scattering contributions to common homodyne SHG measurements in reflection geometries.
View Article and Find Full Text PDFSecond harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11¯02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.
View Article and Find Full Text PDFIn the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations.
View Article and Find Full Text PDF