We present a method to produce anti-fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA-terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll-to-roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements.
View Article and Find Full Text PDFPolymeric reverse osmosis membranes were modified with antifouling polymer brushes through a 'layer by layer' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance of the membranes. In addition, the incorporation of an LBL film also helped to amplify the number of potential reaction sites on the membrane surfaces for attachment of antifouling polymer brushes, which were then attached to the surface.
View Article and Find Full Text PDFAtomic force microscopy (AFM) in conjunction with a bioprobe developed using a polydopamine wet adhesive was used to directly measure the adhesive force between bacteria and different polymeric membrane surfaces. Bacterial cells of Pseudomonas putida and Bacillus subtilis were immobilized onto the tip of a standard AFM cantilever, and force measurements made using the modified cantilever on various membranes. Interaction forces measured with the bacterial probe were compared, qualitatively, to predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory with steric interactions included.
View Article and Find Full Text PDFHerein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane's water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions.
View Article and Find Full Text PDF