The purpose of this study was to analyze the validity and the reliability of the intensity ranges, number of actions and changes of direction measured by a commercial inertial measurement unit. Eleven elite youth futsal players performed a circuit with different type of displacements as sprinting, running at low-medium intensity, standing up and changes of direction. Data recorded by the Overtraq system were compared with video-analyzer during the six trials of each player.
View Article and Find Full Text PDFPurpose: Variations in the radiosensitivity of tumor cells within and between tumors impact tumor response to radiation, including the dose required to achieve permanent local tumor control. The increased expression of DNA-PKcs, a key component of a major DNA damage repair pathway in tumors treated by radiation, suggests that DNA-PKcs-dependent repair is likely a cause of tumor cell radioresistance. This study evaluates the relative biological effect of spread-out Bragg-peak protons in DNA-PKcs-deficient cells and the same cells transfected with a functional DNA-PKcs gene.
View Article and Find Full Text PDFFor the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method.
View Article and Find Full Text PDFPurpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (k ). Pencil beam scanning (PBS) systems cannot approximate reference conditions using a single spot. However, dose distributions requested in TRS-398 can be reproduced with PBS using a combination of spots.
View Article and Find Full Text PDFThe aim of this study is to develop the assessment technique of the effective dose by calculating the organ equivalent dose with a Monte Carlo (MC) simulation and a computational human phantom for the naturally occurring radioactive material (NORM) added consumer products. In this study, we suggests the method determining the MC source term based on the skin-point source enabling the convenient and conservative modeling of the various type of the products. To validate the skin-point source method, the organ equivalent doses were compared with that by the product modeling source of the realistic shape for the pillow, waist supporter, sleeping mattress etc.
View Article and Find Full Text PDFThe aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products.
View Article and Find Full Text PDFPurpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons.
Methods And Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.
Purpose: In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2015
Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ((15)O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion.
Methods And Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions.
We performed an experimental study to verify the range of passively scattered proton beams by detecting prompt gamma-rays emitted from proton-nuclear interactions. A method is proposed using a single scintillation detector positioned near the distal end of the irradiated target. Lead shielding was used to attenuate gamma-rays emitted along most of the entrance path of the beam.
View Article and Find Full Text PDFWe propose a proton range verification technique for passive scattering proton therapy systems where spread out Bragg peak (SOBP) fields are produced with rotating range modulator wheels. The technique is based on the correlation of time patterns of the prompt gamma ray emission with the range of protons delivering the SOBP. The main feature of the technique is the ability to verify the proton range with a single point of measurement and a simple detector configuration.
View Article and Find Full Text PDFWe present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems.
View Article and Find Full Text PDFPurpose: The purpose of this study is to evaluate the potential of using in-room positron emission tomography (PET) for treatment verification in proton therapy and for deriving suitable PET scan times.
Methods And Materials: Nine patients undergoing passive scattering proton therapy underwent scanning immediately after treatment with an in-room PET scanner. The scanner was positioned next to the treatment head after treatment.
This purpose of this study was to investigate the immediate effects of plantar inputs on both the upper half muscle activity (anterior temporal, masseter, digastric, sternocleidomastoid, upper and lower trapezius, cervical) and the body posture, by means of electromyography (EMG) and vertical force platform, respectively. Twenty four (24) healthy adults, between the ages of 24 and 31 years (25.3 +/- 1.
View Article and Find Full Text PDF