Publications by authors named "Mauro Serafin"

Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts.

View Article and Find Full Text PDF

Fast spiking (FS) GABAergic neurons are thought to be involved in the generation of high-frequency cortical rhythms during the waking state. We previously showed that cortical layer 6b (L6b) was a specific target for the wake-promoting transmitter, hypocretin/orexin (hcrt/orx). Here, we have investigated whether L6b FS cells were sensitive to hcrt/orx and other transmitters associated with cortical activation.

View Article and Find Full Text PDF

We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA) of hypocretin/orexin (hcrt/orx) neurons was changed to an inhibition following sleep deprivation (SD). Here we describe that in control condition (CC), i.e.

View Article and Find Full Text PDF

In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx) neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs) could be involved. As canonical transient receptor channels (TRPCs) are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90%) of hcrt/orx neurons.

View Article and Find Full Text PDF

As the major brain circadian pacemaker, the suprachiasmatic nucleus (SCN) is known to influence the timing of sleep and waking. We thus investigated here the effect of SCN stimulation on neurons of the ventrolateral preoptic nucleus (VLPO) thought to be involved in promoting sleep. Using an acute in vitro preparation of the rat anterior hypothalamus/preoptic area, we found that whereas single-pulse stimulations of the SCN evoked standard fast ionotropic IPSPs and EPSPs, train stimulations unexpectedly evoked a long-lasting inhibition (LLI).

View Article and Find Full Text PDF

Numerous models of the oculomotor neuronal integrator located in the prepositus hypoglossi nucleus (PHN) involve both highly tuned recurrent networks and intrinsic neuronal properties; however, there is little experimental evidence for the relative role of these two mechanisms. The experiments reported here show that all PHN neurons (PHNn) show marked phasic behavior, which is highly oscillatory in approximately 25% of the population. The behavior of this subset of PHNn, referred to as type D PHNn, is clearly different from that of the medial vestibular nucleus neurons, which transmit the bulk of head velocity-related sensory vestibular inputs without integrating them.

View Article and Find Full Text PDF

Sleep deprivation is accompanied by the progressive development of an irresistible need to sleep, a phenomenon whose mechanism has remained elusive. Here, we identified for the first time a reflection of that phenomenon in vitro by showing that, after a short 2 h period of total sleep deprivation, the action of noradrenaline on the wake-promoting hypocretin/orexin neurons changes from an excitation to an inhibition. We propose that such a conspicuous modification of responsiveness should contribute to the growing sleepiness that accompanies sleep deprivation.

View Article and Find Full Text PDF

The hypocretin-orexin (hcrt-orx) neurons are thought to maintain wakefulness because their loss results in narcolepsy. This role may be fulfilled by the excitatory action that the hcrt-orx peptide exerts on multiple brainstem and forebrain systems that, in turn, promote cortical activation. Here, we examined whether hcrt-orx may also exert a postsynaptic excitatory action at the level of the cortex, where hcrt-orx fibers project.

View Article and Find Full Text PDF

According to multiple lines of evidence, neurons in the ventrolateral preoptic area (VLPO) that contain GABA promote sleep by inhibiting neurons of the arousal systems. Reciprocally, transmitters used by these systems, including acetylcholine (ACh) and noradrenaline (NA), exert an inhibitory action on the VLPO neurons. Because nicotine, an agonist of ACh, acts as a potent stimulant, we queried whether it might participate in the cholinergic inhibition of these sleep-promoting cells.

View Article and Find Full Text PDF

Wakefulness depends on the activity of hypocretin-orexin neurons because their lesion results in narcolepsy. How these neurons maintain their activity to promote wakefulness is not known. Here, by recording for the first time from hypocretin-orexin neurons and comparing their properties with those of neurons expressing melanin-concentrating hormone, we show that hypocretin-orexin neurons are in an intrinsic state of membrane depolarization that promotes their spontaneous activity.

View Article and Find Full Text PDF

As is evident from the pathological consequences of its absence in narcolepsy, orexin (hypocretin) appears to be critical for the maintenance of wakefulness. Via diffuse projections through the brain, orexin-containing neurons in the hypothalamus may act on a number of wake-promoting systems. Among these are the intralaminar and midline thalamic nuclei, which project in turn in a widespread manner to the cerebral cortex within the nonspecific thalamocortical projection system.

View Article and Find Full Text PDF