Chronic myeloid leukemia (CML) is characterized by the fusion protein BCR::ABL1, a constitutively active tyrosine kinase. The frontline treatment, represented by tyrosine kinase inhibitors (TKIs), has dramatically improved the clinical outcomes of patients. However, TKI resistance through various mechanisms has been reported.
View Article and Find Full Text PDFCystic Fibrosis (CF) is a genetic disease caused by mutations in CFTR gene expressing the anion selective channel CFTR located at the plasma membrane of different epithelial cells. The most commonly investigated variant causing CF is F508del. This mutation leads to structural defects in the CFTR protein, which are recognized by the endoplasmic reticulum (ER) quality control system.
View Article and Find Full Text PDFCystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum.
View Article and Find Full Text PDFCK2 is a Ser/Thr protein kinase composed of two catalytic (/') subunits and a non-catalytic β-subunit dimer, whose activity is often abnormally high in cancer cells. The concept that CK2 may be dispensable for cell survival has been challenged by the finding that viable CK2/' knock-out myoblast clones still express small amounts of an N-terminally deleted ' subunit generated during the CRISPR/Cas9 procedure. Here we show that, although the overall CK2 activity of these CK2/Δ' (KO) cells is less than 10% compared to wild-type (WT) cells, the number of phosphosites with the CK2 consensus is comparable to that of WT cells.
View Article and Find Full Text PDFCystic fibrosis (CF) is caused by mutations in the gene encoding of the cystic fibrosis transmembrane conductance regulator (CFTR), an anion-selective plasma membrane channel that mainly regulates chloride transport in a variety of epithelia. More than 2000 mutations, most of which presumed to be disease-relevant, have been identified in the CFTR gene. The single CFTR mutation F508del (deletion of phenylalanine in position 508) is present in about 90% of global CF patients in at least one allele.
View Article and Find Full Text PDFIn this work, an iterative cycle of enzymatic assays, X-ray crystallography, molecular modelling and cellular assays were used to develop a functionalisable chemical probe for the CK2α/β PPI. The lead peptide, P8C9, successfully binds to CK2α at the PPI site, is easily synthesisable and functionalisable, highly stable in serum and small enough to accommodate further optimisation.
View Article and Find Full Text PDFThe advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations.
View Article and Find Full Text PDFCK2 is a protein kinase involved in several human diseases (ranging from neurological and cardiovascular diseases to autoimmune disorders, diabetes, and infections, including COVID-19), but its best-known implications are in cancer, where it is considered a pharmacological target. Several CK2 inhibitors are available and clinical trials are underway in different cancer types. Recently, the suitability of CK2 as a broad anticancer target has been questioned by the finding that a newly developed compound, named SGC-CK2-1, which is more selective than any other known CK2 inhibitor, is poorly effective in reducing cell growth in different cancer lines, prompting the conclusion that the anticancer efficacy of CX-4945, the commonly used clinical-grade CK2 inhibitor, is to be attributed to its off-target effects.
View Article and Find Full Text PDFSignal Transduct Target Ther
May 2021
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
August 2021
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.
View Article and Find Full Text PDFDeletion of Phe at position 508 (F508del) in CFTR is the commonest cause of Cystic Fibrosis; this mutation affects the fate of the protein, since most of the F508del-CFTR is retained in the endoplasmic reticulum, ubiquitylated and degraded. CFTR is subjected to different post-translational modifications (PTMs) and the possibility to modulate these PTMs has been suggested as a potential therapeutic strategy for the functional recovery of F508del-CFTR. Recently, it has been suggested the presence of a PTM signature (phosphorylation, methylation and ubiquitylation) in the regulatory insertion element of the CFTR, named PTM-code, which is associated with CFTR maturation and F508del-CFTR recovery.
View Article and Find Full Text PDFThe making of a protein is based on the combination of 20 different monomers (22 considering selenocysteine and pyrrolysine, the latest present only in some archaea and bacteria) giving the possibility of building a variety of structures from the simplest to the most complex, rigid or highly dynamic, and suited to carry out a wide range of structural and functional roles [...
View Article and Find Full Text PDFCK2 (an acronym derived from the misnomer "casein kinase 2") denotes a ubiquitous, highly pleiotropic protein kinase which has been implicated in global human pathologies, with special reference to cancer. A large spectrum of fairly selective, cell permeable CK2 inhibitors are available, one of which, CX4945 is already in clinical trials for the treatment of neoplasia. Another recently developed CK2 inhibitor, GO289, displays in vitro potency and selectivity comparable to CX4945.
View Article and Find Full Text PDFCK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α') and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells.
View Article and Find Full Text PDFBackground: Protein kinase CK2 inhibition has long been considered as an attractive anti-cancer strategy based on the following considerations: CK2 is a pro-survival kinase, it is frequently over-expressed in human tumours and its over-expression correlates with a worse prognosis. Preclinical evidence strongly supports the feasibility of this target and, although dozens of CK2 inhibitors have been described in the literature so far, CX-4945 (silmitasertib) was the first that entered into clinical trials for the treatment of both human haematological and solid tumours. However, kinase inhibitor monotherapies turned out to be effective only in a limited number of malignancies, probably due to the multifaceted causes that underlie them, supporting the emerging view that multi-targeted approaches to treat human tumours could be more effective.
View Article and Find Full Text PDFViable clones of C2C12 myoblasts where both catalytic subunits of protein kinase CK2 had been knocked out by the CRISPR/Cas9 methodology have recently been generated, thus challenging the concept that CK2 is essential for cell viability. Here we present evidence that these cells are still endowed with a residual "CK2-like" activity that is able to phosphorylate Ser-13 of endogenous CDC37. Searching for a molecular entity accounting for such an activity we have identified a band running slightly ahead of CK2α' on SDS-PAGE.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
November 2020
Methuosis has been described as a distinctive form of cell death characterized by the displacement of large fluid-filled vacuoles derived from uncontrolled macropinocytosis. Its induction has been proposed as a new strategy against cancer cells. Small molecules, such as indole-based calchones, have been identified as methuosis inducers and, recently, the CK2 inhibitor CX-4945 has been shown to have a similar effect on different cell types.
View Article and Find Full Text PDFCurr Protein Pept Sci
February 2021
The PI3K/Akt pathway is interconnected to protein kinase CK2, which directly phosphorylates Akt1 at S129. We have previously found that, in HK-2 renal cells, downregulation of the CK2 regulatory subunit β (shCK2β cells) reduces S129 Akt phosphorylation. Here, we investigated in more details how the different CK2 isoforms impact on Akt and other signaling pathways.
View Article and Find Full Text PDFProtein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α') and two regulatory (β) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2020
F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients.
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is a particularly aggressive hepatobiliary malignancy, for which the molecular mechanisms underlying the malignant phenotype are still poorly understood, and novel and effective therapeutic strategies are limited. The pro-survival protein kinase CK2 is frequently overexpressed in cancer and is receiving increasing interest as an anti-tumor drug target. Its precise role in CCA biology is still largely unknown.
View Article and Find Full Text PDFCasein kinase 2 (CK2) is a tetrameric protein kinase composed of 2 catalytic (α and α') and 2 regulatory β subunits. Our study provides the first molecular and cellular characterization of the different CK2 subunits, highlighting their individual roles in skeletal muscle specification and differentiation. Analysis of C2C12 cell knockout for each CK2 subunit reveals that: ) CK2β is mandatory for the expression of the muscle master regulator myogenic differentiation 1 in proliferating myoblasts, thus controlling both myogenic commitment and subsequent muscle-specific gene expression and myotube formation; ) CK2α is involved in the activation of the muscle-specific gene program; and ) CK2α' activity regulates myoblast fusion by mediating plasma membrane translocation of fusogenic proteins essential for membrane coalescence, like myomixer.
View Article and Find Full Text PDFInhibition of human papillomavirus (HPV) replication is a promising therapeutic approach for intervening with HPV-related pathologies. Primary targets for interference are two viral proteins, E1 and E2, which are required for HPV replication. Both E1 and E2 are phosphoproteins; thus, the protein kinases that phosphorylate them might represent secondary targets to achieve inhibition of HPV replication.
View Article and Find Full Text PDFThe acronym CK2 (derived from the misnomer 'casein kinase-2') denotes a pleiotropic acidophilic protein kinase implicated in a plethora of cellular functions, whose abnormally high expression correlates with malignancy. CK2 holoenzyme is composed of two catalytic (α and/or α') and two noncatalytic β-subunits. The β-subunits are not responsible for either activation or inactivation of the catalytic ones.
View Article and Find Full Text PDF