Solving subtraction and addition problems is accompanied by spontaneous leftward and rightward gaze shifts, respectively. These shifts have been related to attentional processes involved in mental arithmetic, but whether these processes induce overt attentional shifts mediated by the activation of the motor programs underlying lateral eye movements or covert shifts only is still unknown. Here, we used the abducted eye paradigm to selectively disrupt activation of the oculomotor system and prevent oculomotor preparation, which affects overt but not covert attentional shifts.
View Article and Find Full Text PDFPrevious studies have shown that judgments about how one would perform an action are affected by the current body posture. Hence, judging one's capability to grasp an object between index and thumb is influenced by their aperture at the time of the judgment. This finding can be explained by a modification of the internal representation of one's hand through the effect of sensorimotor input.
View Article and Find Full Text PDFAttention allows pieces of information stored in visuospatial short-term memory (VSSTM) to be selectively processed. Previous studies showed that shifts of attention in VSSTM in response to a retro-cue are accompanied by eye movements in the direction of the position of the memorized item although there is nothing left to look at. This finding raises the possibility that shifts of attention in VSSTM are underpinned by mechanisms originally involved in the planning and control of eye movements.
View Article and Find Full Text PDFProspective judgments about one's capability to perform an action are assumed to involve mental simulation of the action. Previous studies of motor imagery suggest this simulation is supported by a large fronto-parietal network including the motor system. Experiment 1 used fMRI to assess the contribution of this fronto-parietal network to judgments about one's capacity to grasp objects of different sizes between index and thumb.
View Article and Find Full Text PDFThe automatic allocation of attention to a salient stimulus in the visual periphery (e.g., a traffic light turning red) while maintaining fixation elsewhere (e.
View Article and Find Full Text PDFThe representation of numbers in human adults is linked to space. In Western cultures, small and large numbers are associated respectively with the left and right sides of space. An influential framework attributes the emergence of these spatial-numerical associations (SNAs) to cultural factors such as the direction of reading and writing, because SNAs were found to be reduced or inverted in right-to-left readers/writers (e.
View Article and Find Full Text PDFSpatial biases associated with subtraction or addition problem solving are generally considered as reflecting leftward or rightward attention shifts along a mental numerical continuum, but an alternative hypothesis not implying spatial attention proposes that the operator (plus or minus sign) may favour a response to one side of space (left or right) because of semantic associations. We tested these two accounts in a series of temporal order judgement experiments that consisted in the auditory presentation of addition or subtraction problems followed 200 ms (Experiments 1-2) or 800 ms (Experiment 3) later by the display of two lateralized targets in close temporal succession. To dissociate the side where the operation first brought their attention from the side they had to respond to, we asked participants to report which of the left or right target appeared first or last on screen.
View Article and Find Full Text PDFPrevious studies showed that the magnitude information conveyed by sensory cues, such as length or surface, influences the ability to compare the numerosity of sets of objects. However, the perceptual nature of this representation and how it interacts with the processes involved in numerical judgements remain unclear. This study aims to address these issues by studying the interference of length on numerosity under different perceptual and response conditions.
View Article and Find Full Text PDFNeuropsychologia
August 2018
How does the eye guide the hand in an ever-changing world? The perception-action model posits that visually-guided actions rely on object size estimates that are computed from an egocentric perspective independently of the visual context. Accordingly, adjusting grip aperture to object size should be resistant to illusions emerging from the contrast between a target and surrounding elements. However, experimental studies gave discrepant results that have remained difficult to explain so far.
View Article and Find Full Text PDFDistortions of duration perception provoked by emotion-induced arousal changes are explained by modifications of an internal clock pace. Yet, uncertainty still abounds regarding whether changes of arousal induced by physical exercise yield such temporal distortions. Here, we report two experiments aiming to test separately the impact of, on the one hand, a physical induction of arousal and, on the other hand, a task delay on duration categorisation.
View Article and Find Full Text PDFNumerous studies have tried to identify the core deficit of developmental dyscalculia (DD), mainly by assessing a possible deficit of the mental representation of numerical magnitude. Research in healthy adults has shown that numerosity, duration, and space share a partly common system of magnitude processing and representation. However, in DD, numerosity processing has until now received much more attention than the processing of other non-numerical magnitudes.
View Article and Find Full Text PDFQ J Exp Psychol (Hove)
April 2018
Processing numbers induces shifts of spatial attention in probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. This has been interpreted as supporting the concept of a mental number line with number magnitudes ranging from left to right, from small to large numbers. Recently, the investigation of this spatial-numerical link has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems might induce attentional displacements, rightward or leftward, respectively.
View Article and Find Full Text PDFObjectives: Recent findings suggest that mental arithmetic involves shifting attention on a mental continuum in which numbers would be ordered from left to right, from small to large numbers, with addition and subtraction causing rightward or leftward shifts, respectively. Neuropsychological data showing that brain-damaged patients with left neglect experience difficulties in solving subtraction but not addition problems support this hypothesis. However, the reverse dissociation is needed to establish the causal role of spatial attention in mental arithmetic.
View Article and Find Full Text PDFSolving arithmetic problems has been shown to induce shifts of spatial attention, subtraction problems orienting attention to the left side, and addition problems to the right side of space. At the neurofunctional level, the activations elicited by the solving of arithmetical problems resemble those elicited by horizontal eye movements. Whether overt orientation of attention (i.
View Article and Find Full Text PDFNumerosity and duration are thought to share common magnitude-based mechanisms in brain regions including the right parietal and frontal cortices like the supplementary motor area, SMA. Numerosity and duration are, however, also different in several intrinsic features. For instance, in a quantification context, numerosity is known for being more automatically accessed than temporal events, and durations are by definition sequential whereas numerosity can be both sequential and simultaneous.
View Article and Find Full Text PDFNumerical magnitude and specific grasping action processing have been shown to interfere with each other because some aspects of numerical meaning may be grounded in sensorimotor transformation mechanisms linked to finger grip control. However, how specific these interactions are to grasping actions is still unknown. The present study tested the specificity of the number-grip relationship by investigating how the observation of different closing-opening stimuli that might or not refer to prehension-releasing actions was able to influence a random number generation task.
View Article and Find Full Text PDFPrevious studies have shown that left neglect patients are impaired when they have to orient their attention leftward relative to a standard in numerical comparison tasks. This finding has been accounted for by the idea that numerical magnitudes are represented along a spatial continuum oriented from left to right with small magnitudes on the left and large magnitudes on the right. Similarly, it has been proposed that duration could be represented along a mental time line that shares the properties of the number continuum.
View Article and Find Full Text PDFThe perception of reachability (i.e., whether an object is within reach) relies on body representations and action simulation.
View Article and Find Full Text PDFSolving arithmetic problems has been shown to induce shifts of spatial attention in simple probe-detection tasks, subtractions orienting attention to the left side and additions to the right side of space. Whether these attentional shifts constitute epiphenomena or are critically linked to the calculation process is still unknown. In the present study, we investigate participants' performance on addition and subtraction solving while they have to detect central or lateralized targets.
View Article and Find Full Text PDFQ J Exp Psychol (Hove)
September 2015
During a random number generation task, human beings tend to produce more small numbers than large numbers. However, this small number bias is modulated when motor behaviour, such as a turn of the head, is performed during the random number generation task. This result fits with the finding that number representation is linked to laterally oriented actions, with small- and large-magnitude numbers generally linked to movement towards the left or the right side of space, respectively.
View Article and Find Full Text PDFRecent behavioural and brain imaging studies have provided evidence for rightward and leftward attention shifts while solving addition and subtraction problems respectively, suggesting that mental arithmetic makes use of mechanisms akin to those underlying spatial attention. However, this hypothesis mainly relies on correlative data and the causal relevance of spatial attention for mental arithmetic remains unclear. In order to test whether the mechanisms underlying spatial attention are necessary to perform arithmetic operations, we compared the performance of right brain-lesioned patients, with and without left unilateral neglect, and healthy controls in addition and subtraction of two-digit numbers.
View Article and Find Full Text PDFQ J Exp Psychol (Hove)
April 2015
The processing of numbers has been shown to induce shifts of spatial attention in simple probe detection tasks, with small numbers orienting attention to the left and large numbers to the right side of space. Recently, the investigation of this spatial-numerical association has been extended to mental arithmetic with the hypothesis that solving addition or subtraction problems may induce attentional displacements (to the right and to the left, respectively) along a mental number line onto which the magnitude of the numbers would range from left to right, from small to large numbers. Here we investigated such attentional shifts using a target detection task primed by arithmetic problems in healthy participants.
View Article and Find Full Text PDFIn number comparison tasks, the performance is better when the distance between the numbers to compare increases. It has been shown that this so-called numerical distance effect (NDE) decreases with age but the neuroanatomical correlates of these age-related changes are poorly known. Using functional magnetic resonance imaging (fMRI), we recorded the brain activity changes in children aged from 8 to 14 years while they performed a number comparison task on pairs of Arabic digits and a control color comparison task on non-numerical symbols.
View Article and Find Full Text PDFNumerosity, length, and duration processing may share a common functional mechanism situated within the parietal cortex. A strong parallelism between the processing of these three magnitudes has been revealed by similar behavioral signatures (e.g.
View Article and Find Full Text PDFNeuropsychologia
August 2013
When asked to bisect mentally numerical intervals, neglect patients show a displacement of the numerical midpoint similar to the one observed in physical line bisection. This spatial-numerical bias has been taken as evidence of the spatial nature of numerical magnitude representations. However, to date, neuropsychological studies in neglect patients have only used symbolic numerical material.
View Article and Find Full Text PDF