Mapping tropical forest aboveground biomass (AGB) is important for quantifying emissions from land use change and evaluating climate mitigation strategies but remains a challenging problem for remote sensing observations. Here, we evaluate the capability of mapping AGB across a dense tropical forest using tomographic Synthetic Aperture Radar (TomoSAR) measurements at P-band frequency that will be available from the European Space Agency's BIOMASS mission in 2024. To retrieve AGB, we compare three different TomoSAR reconstruction algorithms, back-projection (BP), Capon, and MUltiple SIgnal Classification (MUSIC), and validate AGB estimation from models using TomoSAR variables: backscattered power at 30 m height, forest height (FH), backscatter power metric (Q), and their combination.
View Article and Find Full Text PDF