Publications by authors named "Mauro Lorenzo Mugnai"

Residues spanning distinct regions of the low-complexity domain of the RNA-binding protein, Fused in Sarcoma (FUS-LC), form fibril structures with different core morphologies. Solid-state NMR experiments show that the 214-residue FUS-LC forms a fibril with an S-bend (core-1, residues 39-95), while the rest of the protein is disordered. In contrast, the fibrils of the C-terminal variant (FUS-LC-C; residues 111-214) have a U-bend topology (core-2, residues 112-150).

View Article and Find Full Text PDF

We present a theoretical method to study how changes in pH shape the heterogeneous conformational ensemble explored by intrinsically disordered proteins (IDPs). The theory is developed in the context of coarse-grained models, which enable a fast, accurate, and extensive exploration of conformational space at a given protonation state. In order to account for pH effects, we generalize the molecular transfer model (MTM), in which conformations are re-weighted using the transfer free energy, which is the free energy necessary for bringing to equilibrium in a new environment a "frozen" conformation of the system.

View Article and Find Full Text PDF

Molecular motors, such as myosin, kinesin, and dynein, convert the energy released by the hydrolysis of ATP into mechanical work, thus allowing them to undergo directional motion on cytoskeletal tracks. A pivotal step in the chemomechanical transduction in myosin motors occurs after they bind to the actin filament, which triggers the release of phosphate (P, product of ATP hydrolysis) and the rotation of the lever arm. Here, we investigate the mechanism of phosphate release in myosin VI using extensive molecular dynamics simulations involving multiple trajectories of several μs.

View Article and Find Full Text PDF

Cytoplasmic dynein, whose motor domain belongs to the AAA+ family, walks on microtubules toward the minus end. Using the available structures in different nucleotide states, we performed simulations of a coarse-grained model to elucidate the dynamics of allosteric transitions. Binding of ATP closes the cleft between the AAA1 and AAA2 domains, triggering conformational changes in the rest of the motor domain, thus forming the pre-power stroke state.

View Article and Find Full Text PDF