According to the literature, seizure prediction models should be developed following a patient-specific approach. However, seizures are usually very rare events, meaning the number of events that may be used to optimise seizure prediction approaches is limited. To overcome such constraint, we analysed the possibility of using data from patients from an external database to improve patient-specific seizure prediction models.
View Article and Find Full Text PDFEpilepsy affects around 1% of the population worldwide. Anti-epileptic drugs are an excellent option for controlling seizure occurrence but do not work for around one-third of patients. Warning devices employing seizure prediction or forecasting algorithms could bring patients new-found comfort and quality of life.
View Article and Find Full Text PDFObjective: Seizure prediction is a promising solution to improve the quality of life for drug-resistant patients, which concerns nearly 30% of patients with epilepsy. The present study aimed to ascertain the impact of incorporating sleep-wake information in seizure prediction.
Methods: We developed five patient-specific prediction approaches that use vigilance state information differently: i) using it as an input feature, ii) building a pool of two classifiers, each with different weights to sleep/wake training samples, iii) building a pool of two classifiers, each with only sleep/wake samples, iv) changing the alarm-threshold concerning each sleep/wake state, and v) adjusting the alarm-threshold after a sleep-wake transition.
Almost one-third of epileptic patients fail to achieve seizure control through anti-epileptic drug administration. In the scarcity of completely controlling a patient's epilepsy, seizure prediction plays a significant role in clinical management and providing new therapeutic options such as warning or intervention devices. Seizure prediction algorithms aim to identify the preictal period that Electroencephalogram (EEG) signals can capture.
View Article and Find Full Text PDFMany state-of-the-art methods for seizure prediction, using the electroencephalogram, are based on machine learning models that are black boxes, weakening the trust of clinicians in them for high-risk decisions. Seizure prediction concerns a multidimensional time-series problem that performs continuous sliding window analysis and classification. In this work, we make a critical review of which explanations increase trust in models' decisions for predicting seizures.
View Article and Find Full Text PDFThe development of seizure prediction models is often based on long-term scalp electroencephalograms (EEGs) since they capture brain electrical activity, are non-invasive, and come at a relatively low-cost. However, they suffer from major shortcomings. First, long-term EEG is usually highly contaminated with artefacts.
View Article and Find Full Text PDFTypical seizure prediction models aim at discriminating interictal brain activity from pre-seizure electrographic patterns. Given the lack of a preictal clinical definition, a fixed interval is widely used to develop these models. Recent studies reporting preictal interval selection among a range of fixed intervals show inter- and intra-patient preictal interval variability, possibly reflecting the heterogeneity of the seizure generation process.
View Article and Find Full Text PDFScalp electroencephalogram is a non-invasive multi-channel biosignal that records the brain's electrical activity. It is highly susceptible to noise that might overshadow important data. Independent component analysis is one of the most used artifact removal methods.
View Article and Find Full Text PDFSeizure prediction may be the solution for epileptic patients whose drugs and surgery do not control seizures. Despite 46 years of research, few devices/systems underwent clinical trials and/or are commercialized, where the most recent state-of-the-art approaches, as neural networks models, are not used to their full potential. The latter demonstrates the existence of social barriers to new methodologies due to data bias, patient safety, and legislation compliance.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2022
Objective: Independent component analysis (ICA) is commonly used to remove noisy artifacts from multi-channel scalp electroencephalogram (EEG) signals. ICA decomposes EEG into different independent components (ICs) and then, experts remove the noisy ones. This process is highly time-consuming and experts are not always available.
View Article and Find Full Text PDFElectrocardiogram (ECG) recordings, lasting hours before epileptic seizures, have been studied in the search for evidence of the existence of a preictal interval that follows a normal ECG trace and precedes the seizure's clinical manifestation. The preictal interval has not yet been clinically parametrized. Furthermore, the duration of this interval varies for seizures both among patients and from the same patient.
View Article and Find Full Text PDFSeizure prediction may improve the quality of life of patients suffering from drug-resistant epilepsy, which accounts for about 30% of the total epileptic patients. The pre-ictal period determination, characterized by a transitional stage between normal brain activity and seizure, is a critical step. Past approaches failed to attain real-world applicability due to lack of generalization capacity.
View Article and Find Full Text PDFMultiple Sclerosis is a chronic inflammatory disease, affecting the Central Nervous System and leading to irreversible neurological damage, such as long term functional impairment and disability. It has no cure and the symptoms vary widely, depending on the affected regions, amount of damage, and the ability to activate compensatory mechanisms, which constitutes a challenge to evaluate and predict its course. Additionally, relapsing-remitting patients can evolve its course into a secondary progressive, characterized by a slow progression of disability independent of relapses.
View Article and Find Full Text PDF