Publications by authors named "Mauro Causa"

CRYSTAL is a periodic ab initio code that uses a Gaussian-type basis set to express crystalline orbitals (i.e., Bloch functions).

View Article and Find Full Text PDF

The VNH defect in diamond (a vacancy surrounded by three nitrogen and one carbon atoms, the latter being saturated by a hydrogen atom) is investigated quantum-mechanically by use of a periodic supercell approach, an all-electron Gaussian-type basis set, "hybrid" functionals of density functional theory, and the Crystal program. Three fully optimized structural models (supercells containing 32, 64, and 128 atoms) are considered to investigate the effect of defect concentration. The electronic configuration of the defect is reported along with a description of its structural features.

View Article and Find Full Text PDF

The ability of thermosalient solids, organic analogues of inorganic martensites, to move by rapid mechanical reconfiguration or ballistic event remains visually appealing and potentially useful, yet mechanistically elusive phenomenon. Here, with a material that undergoes both thermosalient and non-thermosalient phase transitions, we demonstrate that the thermosalient effect is preceded by anomalous thermal expansion of the unit cell. The crystal explosion occurs as sudden release of the latent strain accumulated during the anisotropic, exceedingly strong expansion of the unit cell with αa = 225.

View Article and Find Full Text PDF

In this work we propose a general strategy to calculate accurate He-surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys.

View Article and Find Full Text PDF

Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB.

View Article and Find Full Text PDF

The present paper studies MX crystals in rock-salt structure (M: Li, Na, K; X: F, Cl, Br, I). They are often described as being formed by ions. Pictures based on quantum mechanical calculations sustain and quantify it.

View Article and Find Full Text PDF

PAH-based models, with an even or odd number of unsaturated carbon atoms and π electrons (even and odd PAHs for short), are selected to investigate, by molecular and periodic methods, their electron distribution and border reactivity toward ozone, and also to represent local features and edge reactivity of even or odd soot platelets. These results will contrast those previously collected for the internal positions of similar even (J. Phys.

View Article and Find Full Text PDF

MgCl(2) is the preferred support for the industrial Ziegler-Natta catalysts, and is believed to act as a template for the epitactic chemisorption of the active Ti species. As the first step of a thorough computational modeling of these systems, we studied the bulk and surface structure of the ordered alpha and beta phases of MgCl(2) by means of periodic DFT (B3LYP) methods using localized basis sets. The layer structure of both phases was reproduced satisfactorily with the inclusion of a (small) empirical dispersion correction ("DFT-D") as a practical method to describe the attraction between the layers.

View Article and Find Full Text PDF

PAHs made from an odd number of unsaturated carbon atoms and pi electrons (odd PAHs) have been detected in flames and flank the more familiar even PAHs, having approximately the same quantitative importance, particularly for PAHs containing more than 25 carbon atoms. Similarly, soot platelets containing an odd number of carbon atoms can be reasonably assumed to form during combustion. PAHs are intended here as small models for the investigation of some of their local features.

View Article and Find Full Text PDF

The viability of some nitration pathways is explored for benzene (B), naphthalene (N), and in part pyrene (P). In principle, functionalization can either take place by direct nitration (NO2 or N2O5 attack) or be initiated by more reactive species, as the nitrate and hydroxyl radicals. The direct attack of the NO2 radical on B and N, followed by abstraction of the H geminal to the nitro group (most likely accomplished by 3O2) could yield the final nitro-derivatives.

View Article and Find Full Text PDF

The desorption mechanism for oxygenated functionalities on soot is investigated by quantum mechanical calculations on functionalized polycyclic aromatic hydrocarbon (PAH) models and compared with recently published temperature programed desorption-mass spectrometry results. Substituents on PAHs of increasing size (up to 46 carbon atoms in the parent PAH) are chosen to reproduce the local features of an oxidized graphenic soot platelet. Initially, the study is carried out on unimolecular fragmentation (extrusion, in some cases) processes producing HO, CO, or CO2, in model ketones, carboxylic acids, lactones, anhydrides, in one aldehyde, one peroxyacid, one hydroperoxide, one secondary alcohol, and one phenol.

View Article and Find Full Text PDF

The ozonization mechanism for polycyclic aromatic hydrocarbons (PAHs) and soot is investigated by quantum mechanical calculations carried out on molecular and periodic systems. PAHs, interesting per se, serve also to model the local features of the graphenic soot platelets, for which another model is provided by a periodic representation of one graphenic layer. A concerted addition leads to a primary ozonide, while a nonconcerted attack produces a trioxyl diradical (in which one of the two unpaired electrons is pi-delocalized).

View Article and Find Full Text PDF

Siliceous sponges, one of the few animal groups involved in a biosilicification process, deposit hydrated silica in discrete skeletal elements called spicules. A multidisciplinary analysis of the structural features of the protein axial filaments inside the spicules of a number of marine sponges, belonging to two different classes (Demospongiae and Hexactinellida), is presented, together with a preliminary analysis of the biosilicification process. The study was carried out by a unique combination of techniques: fiber diffraction using synchrotron radiation, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC), Fourier transform infrared spectroscopy (FTIR), and molecular modeling.

View Article and Find Full Text PDF