Publications by authors named "Mauro C M Laranjeira"

This paper describes the encapsulation of a high molecular weight molecule rifampicin (RIF) in sodium alginate/chitosan microparticles, which provided controlled-release when evaluated in vitro. The microparticles were prepared by the coacervation technique. To evaluate and select the best encapsulation method two approaches were applied: coacervation (MCP method 1) and impregnation (MCP method 2).

View Article and Find Full Text PDF

Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.

View Article and Find Full Text PDF

In this work, we propose the reuse of apple pomace as a substrate for fungal chitosan production by liquid cultivation of Gongronella butleri CCT4274. Different concentrations of reducing sugars and sodium nitrate were added to the aqueous extract of apple pomace and the best result was obtained with 40 g/L of reducing sugars and 2.5 g/L of sodium nitrate.

View Article and Find Full Text PDF

A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts.

View Article and Find Full Text PDF

An accurate, simple, reproducible, and sensitive liquid chromatographic method is developed and validated to quantitate acyclovir (ACV) in cross-linked chitosan microspheres produced by spray drying. The analysis is carried out using a reversed-phase C18 column with UV-vis detection at 254 nm. The mobile phase is diluted with pure water and acetonitrile (95:5 v/v) at a flow-rate of 0.

View Article and Find Full Text PDF

Adsorption of reactive orange 16 by quaternary chitosan salt (QCS) was used as a model to demonstrate the removal of reactive dyes from textile effluents. The polymer was characterized by infrared (IR), energy dispersive X-ray spectrometry (EDXS) analyses and amount of quaternary ammonium groups. The adsorption experiments were conducted at different pH values and initial dye concentrations.

View Article and Find Full Text PDF

In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL.

View Article and Find Full Text PDF

Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems.

View Article and Find Full Text PDF

Chitosan biopolymer chemically modified with the complexation agent 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol (BPMAMF) was employed to study the kinetics and the equilibrium adsorption of Cu(II), Cd(II), and Ni(II) metal ions as functions of the pH solution. The maximum adsorption of Cu(II) was found at pH 6.0, while the Cd(II) and Ni(II) maximum adsorption occurred in acidic media, at pH 2.

View Article and Find Full Text PDF