Sphingolipids (SPLs) are major components of cell membranes with significant functions. Their production is a highly-regulated multi-step process with the formation of two major intermediates, long chain bases (LCBs) and ceramides. Homologous Orm proteins in both yeast and mammals negatively regulate LCB production by inhibiting serine palmitoyltransferase (SPT), the first enzyme in SPL de novo synthesis.
View Article and Find Full Text PDFAntimicrobial drug resistance poses a global health threat, requiring a deeper understanding of the evolutionary processes that lead to its emergence in pathogens. Complex evolutionary dynamics involve multiple mutations that can result in cooperative or competitive (clonal interference) effects. Candida albicans, a major fungal pathogen, displays high rates of copy number variation (CNV) and loss of heterozygosity (LOH).
View Article and Find Full Text PDFUnlabelled: () is an opportunistic fungal microorganism that causes life-threatening meningoencephalitis. During the infection, the microbial population is heterogeneously composed of cells with varying generational ages, with older cells accumulating during chronic infections. This is attributed to their enhanced resistance to phagocytic killing and tolerance of antifungals like fluconazole (FLC).
View Article and Find Full Text PDFCryptococcus neoformans (Cn) is an opportunistic yeast that causes meningoencephalitis in immunocompromised individuals. Calorie restriction (CR) prolongs Cn replicative lifespan (RLS) and mimics low-glucose environments in which Cn resides during infection. The effects of CR-mediated stress can differ among strains and have only been studied in MATα cells.
View Article and Find Full Text PDFErgosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans.
View Article and Find Full Text PDFInvasive fungal infections (IFIs) caused by pathogenic fungi pose a significant public health concern, particularly for immunocompromised individuals. Mortality rates for IFIs remain high, and currently available treatment options are limited. Existing antifungal agents often suffer from limited clinical efficacy, poor fungicidal activity within the host, potential toxicity, and increasing ineffectiveness due to emerging resistance, especially against triazole drugs, the current mainstay of antifungal treatment.
View Article and Find Full Text PDFCryptococcus neoformans infections are a major worldwide concern as current treatment strategies are becoming less effective in alleviating the infection. The most extreme and fatal cases are those of immunocompromised individuals. Clinical treatments for cryptococcosis are limited to a few classes of approved drugs, and due to a rise in drug resistance, these drugs are becoming less effective.
View Article and Find Full Text PDFBiofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model.
View Article and Find Full Text PDFUnlabelled: Acylhydrazone (AH) derivatives represent a novel category of anti-fungal medications that exhibit potent activity against sp., both and in a murine model of sporotrichosis. In this study, we demonstrated the anti-fungal efficacy of the AH derivative D13 [4-bromo-'-(3,5-dibromo-2-hydroxybenzylidene)-benzohydrazide] against both planktonic cells and biofilms formed by .
View Article and Find Full Text PDFClinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
November 2023
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity.
View Article and Find Full Text PDFMicrobiol Spectr
June 2023
Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition.
View Article and Find Full Text PDFInvasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus () in murine models of mycoses.
View Article and Find Full Text PDFVaccines are one of the most effective public health tools to prevent and manage infectious diseases. Since the first clinical use of vaccines in the late 18th century, many vaccines have been successfully developed to combat bacterial and viral infections, including the most recent Coronavirus Disease 2019 (COVID-19) pandemic. However, there remains no vaccine that is clinically available to treat or prevent invasive fungal diseases, including cryptococcal meningoencephalitis.
View Article and Find Full Text PDFSterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells.
View Article and Find Full Text PDFWe previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4 T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4 T (or CD8 T) deficiency, and protection was lost when either cytokine was neutralized.
View Article and Find Full Text PDFAspergillus fumigatus causes invasive aspergillosis (IA) in immunocompromised patients, resulting in high mortality rates. Currently, no vaccine formulations to promote immune protection in at-risk individuals have been developed. In this work, we deleted the sterylglucosidase-encoding gene, , in Aspergillus fumigatus and investigated its role in fungal virulence and host vaccine protection.
View Article and Find Full Text PDFSphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition.
View Article and Find Full Text PDFFungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections.
View Article and Find Full Text PDFVaccines are one of the greatest medical accomplishments to date, yet no fungal vaccines are currently available in humans mainly because opportunistic mycoses generally occur during immunodeficiencies necessary for vaccine protection. In previous studies, a live, attenuated Δ mutant accumulating sterylglucosides was found to be avirulent and protected mice from a subsequent lethal infection even in absence of CD4 T cells, a condition most associated with cryptococcosis (e.g.
View Article and Find Full Text PDFIn this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation .
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
May 2022
Background And Objectives: To describe the characteristics of patients with MS reporting cryptococcal meningitis (CM) while treated with fingolimod.
Methods: The Novartis safety database was searched for cases with CM between January 26, 2006, and February 28, 2020. The reporting rate of CM was estimated based on the case reports received and exposure to fingolimod in the postmarketing setting during the relevant period.
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation.
View Article and Find Full Text PDF