Publications by authors named "Maurizio Vitadello"

The vegetal polyphenol curcumin displays beneficial effects against skeletal muscle derangement induced by oxidative stress, disuse or aging. Since oxidative stress and inflammation are involved in the progression of muscle dystrophy, the effects of curcumin administration were investigated in the diaphragm of mice injected intraperitoneally or subcutaneously with curcumin for 4-12-24 weeks. Curcumin treatment independently of the way and duration of administration (i) ameliorated myofiber maturation index without affecting myofiber necrosis, inflammation and degree of fibrosis; (ii) counteracted the decrease in type 2X and 2B fiber percentage; (iii) increased about 30% both twitch and tetanic tensions of diaphragm strips; (iv) reduced myosin nitrotyrosination and tropomyosin oxidation; (v) acted on two opposite nNOS regulators by decreasing active AMP-Kinase and increasing SERCA1 protein levels, the latter effect being detectable also in myotube cultures from satellite cells.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) chaperone Grp94/gp96 appears to be involved in cytoprotection without being required for cell survival. This study compared the effects of Grp94 protein levels on Ca homeostasis, antioxidant cytoprotection and protein-protein interactions between two widely studied cell lines, the myogenic C2C12 and the epithelial HeLa, and two breast cancer cell lines, MDA-MB-231 and HS578T. In myogenic cells, but not in HeLa, Grp94 overexpression exerted cytoprotection by reducing ER Ca storage, due to an inhibitory effect on SERCA2.

View Article and Find Full Text PDF

Curcumin administration attenuates muscle disuse atrophy, but its effectiveness against aging-induced, selective loss of mass or force (presarcopenia or asthenia/dynopenia), or combined loss (sarcopenia), remains controversial. A new systemic curcumin treatment was developed and tested in 18-month-old C57BL6J and C57BL10ScSn male mice. The effects on survival, liver toxicity, loss of muscle mass and force, and satellite cell responsivity and commitment were evaluated after 6-month treatment.

View Article and Find Full Text PDF

Background: Unloading/disuse induces skeletal muscle atrophy in bedridden patients and aged people, who cannot prevent it by means of exercise. Because interventions against known atrophy initiators, such as oxidative stress and neuronal NO synthase (nNOS) redistribution, are only partially effective, we investigated the involvement of melusin, a muscle-specific integrin-associated protein and a recognized regulator of protein kinases and mechanotransduction in cardiomyocytes.

Methods: Muscle atrophy was induced in the rat soleus by tail suspension and in the human vastus lateralis by bed rest.

View Article and Find Full Text PDF

SUMOylation is a dynamic, reversible, enzymatic drug-targetable post-translational modification (PTM) reaction where the Small Ubiquitin-like Modifier (SUMO) moieties are attached to proteins. This reaction regulates various biological functions like cell growth, differentiation, and it is crucial for maintaining organ homeostasis. However, the actions of SUMO in skeletal muscle pathophysiology are still not investigated.

View Article and Find Full Text PDF

Skeletal muscle atrophy following unloading or immobilization represents a major invalidating event in bedridden patients. Among mechanisms involved in atrophy development, a controversial role is played by neuronal NOS (nNOS; NOS1), whose dysregulation at the protein level and/or subcellular distribution also characterizes other neuromuscular disorders. This study aimed to investigate unloading-induced changes in nNOS before any evidence of myofiber atrophy, using vastus lateralis biopsies obtained from young healthy subjects after a short bed-rest and rat soleus muscles after exposure to short unloading periods.

View Article and Find Full Text PDF

Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle.

View Article and Find Full Text PDF

While the mechanism by which Grp94 displays its chaperone function with client peptides in the cell has been elucidated extensively, much less is known about the nature and properties of how Grp94 can engage binding to proteins once it is exposed on the cell surface or liberated in the extra-cellular milieu, as occurs in pathological conditions. In this work, we wanted to investigate the molecular aspects and structural characteristics of complexes that Grp94 forms with human IgG, posing the attention on the influence that glycosylation of Grp94 might have on the binding capacity to IgG, and on the identification of sites involved in the binding. To this aim, we employed both native, fully glycosylated and partially glycosylated Grp94, and recombinant, non-glycosylated Grp94, as well as IgG subunits, in different experimental conditions, including the physiological setting of human plasma.

View Article and Find Full Text PDF

Background: Exposure to intermittent hypoxia (IH) may enhance cardiac function and protects heart against ischemia-reperfusion (I/R) injury. To elucidate the underlying mechanisms, we developed a cardioprotective IH model that was characterized at hemodynamic, biochemical and molecular levels.

Methods: Mice were exposed to 4 daily IH cycles (each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times) for 14 days, with normoxic mice as controls.

View Article and Find Full Text PDF

Aims: Redox and growth-factor imbalance fosters muscle disuse atrophy. Since the endoplasmic-reticulum chaperone Grp94 is required for folding insulin-like growth factors (IGFs) and for antioxidant cytoprotection, we investigated its involvement in muscle mass loss due to inactivity.

Results: Rat soleus muscles were transfected in vivo and analyzed after 7 days of hindlimb unloading, an experimental model of muscle disuse atrophy, or standard caging.

View Article and Find Full Text PDF

Curcumin is a non-toxic polyphenol with pleiotropic activities and limited bioavailability. We investigated whether a brief exposure to low doses of curcumin would induce in the myogenic C2C12 cell line an endoplasmic reticulum (ER) stress response and protect against oxidative stress. A 3-hr curcumin administration (5-10 microM) increased protein levels of the ER chaperone Grp94, without affecting those of Grp78, calreticulin and haeme-oxygenase-1 (HO-1).

View Article and Find Full Text PDF

Introduction: The endoplasmic reticulum (ER) stress-response, evoked in mice by the overexpression of class I major histocompatibility complex antigen (MHC-I), was proposed as a major mechanism responsible for skeletal muscle damage and dysfunction in autoimmune myositis. The present study was undertaken to characterize in more detail the ER stress-response occurring in myofibers of patients with inflammatory myopathies, focusing on the expression and distribution of Grp94, calreticulin and Grp75, three ER chaperones involved in immunomodulation.

Methods: Muscle biopsies were obtained from seven healthy subjects and 29 myositis patients, who were subdivided into groups based on the morphological evidence of inflammation and/or sarcolemmal immunoreactivity for MHC-I.

View Article and Find Full Text PDF

It is presently unknown whether oxidative stress increases in disused skeletal muscle in humans. Markers of oxidative stress were investigated in biopsies from the vastus lateralis muscle, collected from healthy subjects before [time 0 (T0)], after 1 wk (T8), and after 5 wk (T35) of bed rest. An 18% decrease in fiber cross-sectional area was detected in T35 biopsies (P<0.

View Article and Find Full Text PDF

The endoplasmic-reticulum chaperone Grp94 is required for the cell surface export of molecules involved in the native immune response, in mesoderm induction and muscle development, but the signals responsible for Grp94 recruitment are still obscure. Here we show for the first time that Grp94 undergoes Tyr-phosphorylation in differentiating myogenic C2C12 cells. By means of phospho-proteomic and immunoprecipitation analyses, and the use of Src-specific inhibitors we demonstrate that the Src-tyrosine-kinase Fyn becomes active early after induction of C2C12 cell differentiation, in parallel with the recruitment and the Tyr-phosphorylation of Grp94, which peaks at 6-hour differentiation.

View Article and Find Full Text PDF

Rat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O(2)), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle.

View Article and Find Full Text PDF

Increase in free intracellular calcium [Ca 2+]i plays a crucial role in cardiomyocyte ischemic injury. Here we demonstrate that overexpression of the sarcoplasmic-reticulum stress-protein Grp94 reduces myocyte necrosis due to calcium overload or simulated ischemia. Selective three- to eightfold Grp94 increase, with no change in Grp78 or calreticulin amount, was achieved by stable transfection of skeletal C2C12 and cardiac H9c2 muscle cells.

View Article and Find Full Text PDF