Plants (Basel)
December 2024
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation.
View Article and Find Full Text PDFThe amino acid proline accumulates in plants during abiotic stresses such as drought and salinity and is considered a reliable marker of environmental stress. While its accumulation is well established, its precise role in stress tolerance and its underlying molecular mechanism remain less clear. To address these issues, we performed a meta-analysis-a robust statistical technique that synthesizes results from multiple independent studies while accounting for experimental differences.
View Article and Find Full Text PDFThe rapid increase in average temperatures and the progressive reduction in rainfalls caused by climate change is reducing crop yields worldwide, particularly in regions with hot and semi-arid climates such as the Mediterranean area. In natural conditions, plants respond to environmental drought stress with diverse morphological, physiological, and biochemical adaptations in an attempt to escape, avoid, or tolerate drought stress. Among these adaptations to stress, the accumulation of abscisic acid (ABA) is of pivotal importance.
View Article and Find Full Text PDFThe recent finding that proline-induced root elongation is mediated by reactive oxygen species (ROS) prompted us to re-evaluate other developmental processes modulated by proline, such as flowering time. By controlling the cellular redox status and the ROS distribution, proline could potentially affect the expression of transcriptional factors subjected to epigenetic regulation, such as (). Accordingly, we investigated the effect of proline on flowering time in more detail by analyzing the relative expression of the main flowering time genes in proline-deficient mutants and found a significant upregulation of expression.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aβ) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD.
View Article and Find Full Text PDFPlants (Basel)
December 2018
Background: In many plants, the amino acid proline is strongly accumulated in pollen and disruption of proline synthesis caused abortion of microspore development in Arabidopsis. So far, it was unclear whether local biosynthesis or transport of proline determines the success of fertile pollen development.
Results: We analyzed the expression pattern of the proline biosynthetic genes PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 & 2 (P5CS1 & 2) in Arabidopsis anthers and both isoforms were strongly expressed in developing microspores and pollen grains but only inconsistently in surrounding sporophytic tissues.
Background: We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth.
Results: To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone.
Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status.
View Article and Find Full Text PDFBackground: In crosses between the proline-deficient mutant homozygous for p5cs1 and heterozygous for p5cs2 (p5cs1 p5cs2/P5CS2), used as male, and different Arabidopsis mutants, used as females, the p5cs2 mutant allele was rarely transmitted to the outcrossed progeny, suggesting that the fertility of the male gametophyte carrying mutations in both P5CS1 and P5CS2 is severely compromised.
Results: To confirm the fertility defects of pollen from p5cs1 p5cs2/P5CS2 mutants, transmission of mutant alleles through pollen was tested in two ways. First, the number of progeny inheriting a dominant sulfadiazine resistance marker linked to p5cs2 was determined.
In addition to its role in protein synthesis and the plant cells' response to environmental stresses, circumstantial evidence suggest that proline may also play a role in flowering and development both as a metabolite and as a signal molecule. Although there is a growing consensus that proline is of special importance throughout the reproductive phase (from flower transition to seed development) a general agreement on the molecular and genetic mechanisms proline is involved in, is yet to be established. In this paper we shall review and critically discuss most of the evidence supporting a role for proline in plant development, paying special attention to the recently reported role of proline in flower transition.
View Article and Find Full Text PDFWe reported previously that the plant oncogene rolD anticipates and stimulates flowering in Nicotiana tabacum, and encodes ornithine cyclodeaminase, an enzyme catalysing the conversion of ornithine to proline. To investigate on the possible role of proline in flowering, we altered the expression of AtP5CS1, encoding the rate-limiting enzyme of proline biosynthesis in plants. Accordingly we characterized a mutant line containing a T-DNA insertion into AtP5CS1 and introduced in Arabidopsis thaliana AtP5CS1 under the control of the CaMV35S promoter.
View Article and Find Full Text PDFIn plants, cysteine protease inhibitors are involved in the regulation of protein turnover and play an important role in resistance against insects and pathogens. AtCYS1 from Arabidopsis thaliana encodes a protein of 102 amino acids that contains the conserved motif of cysteine protease inhibitors belonging to the cystatin superfamily (Gln-Val-Val-Ala-Gly). Recombinant A.
View Article and Find Full Text PDFThe design of minimal units required for enzyme inhibition is a major field of interest in structural biology and biotechnology. The successful design of the cyclic dodecapeptide corresponding to the Phe17-Val28 reactive site amino acid sequence of the low-molecular-mass trypsin inhibitor RTI-III from Brassica napus (micro-RTI-III) and of the recombinant murine dihydrofolate reductase-(DHFR-)micro-RTI-III fusion protein (DHFR-micro-RTI-III) is reported here. Micro-RTI-III was synthesized using a stepwise solid-phase approach based on the standard Fmoc chemistry, purified by RP-HPLC, and oxidatively refolded.
View Article and Find Full Text PDF